» Articles » PMID: 11104818

Signal Transduction Cascades Regulating Fungal Development and Virulence

Overview
Specialty Microbiology
Date 2000 Dec 6
PMID 11104818
Citations 345
Authors
Affiliations
Soon will be listed here.
Abstract

Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.

Citing Articles

Virulence perspective genomic research unlocks the secrets of associated with banded sheath blight in Barnyard Millet ().

Patro T, Palanna K, Jeevan B, Tatineni P, Poonacha T, Khan F Front Plant Sci. 2024; 15:1457912.

PMID: 39529934 PMC: 11551851. DOI: 10.3389/fpls.2024.1457912.


Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds.

De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler J, Balestrini R IMA Fungus. 2024; 15(1):31.

PMID: 39456087 PMC: 11503967. DOI: 10.1186/s43008-024-00165-6.


Exploration on cold adaptation of Antarctic lichen via detection of positive selection genes.

Wang Y, Zhang Y, Li R, Qian B, Du X, Qiu X IMA Fungus. 2024; 15(1):29.

PMID: 39252145 PMC: 11386357. DOI: 10.1186/s43008-024-00160-x.


Fungal biofilm formation and its regulatory mechanism.

Wang D, Zeng N, Li C, Li Z, Zhang N, Li B Heliyon. 2024; 10(12):e32766.

PMID: 38988529 PMC: 11233959. DOI: 10.1016/j.heliyon.2024.e32766.


Measuring Stress Phenotypes in Cryptococcus neoformans.

Upadhya R, Probst C, Alspaugh J, Lodge J Methods Mol Biol. 2024; 2775:277-303.

PMID: 38758325 PMC: 11521573. DOI: 10.1007/978-1-0716-3722-7_19.


References
1.
Wang P, Heitman J . Signal transduction cascades regulating mating, filamentation, and virulence in Cryptococcus neoformans. Curr Opin Microbiol. 1999; 2(4):358-62. DOI: 10.1016/S1369-5274(99)80063-0. View

2.
Bencina M, Panneman H, Ruijter G, Legisa M, Visser J . Characterization and overexpression of the Aspergillus niger gene encoding the cAMP-dependent protein kinase catalytic subunit. Microbiology (Reading). 1997; 143 ( Pt 4):1211-1220. DOI: 10.1099/00221287-143-4-1211. View

3.
Castilla R, PASSERON S, Cantore M . N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal. 1999; 10(10):713-9. DOI: 10.1016/s0898-6568(98)00015-1. View

4.
Davidson R, Cruz M, Sia R, Allen B, Alspaugh J, Heitman J . Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol. 2000; 29(1):38-48. DOI: 10.1006/fgbi.1999.1180. View

5.
Kwon-Chung K . Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia. 1976; 68(4):821-33. View