» Articles » PMID: 12368295

Cloning and Characterization of Two Extracellular Heparin-degrading Endosulfatases in Mice and Humans

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2002 Oct 9
PMID 12368295
Citations 191
Authors
Affiliations
Soon will be listed here.
Abstract

Here we report the cloning of a full-length cDNA encoding the human ortholog (HSulf-1) of the developmentally regulated putative sulfatases QSulf-1 (Dhoot, G. K., Gustafsson, M. K., Ai, X., Sun, W., Standiford, D. M., and Emerson, C. P., Jr. (2001) Science 293, 1663-1666) and RSulfFP1 (Ohto, T., Uchida, H., Yamazaki, H., Keino-Masu, K., Matsui, A., and Masu, M. (2002) Genes Cells 7, 173-185) as well as a cDNA encoding a closely related protein, designated HSulf-2. We have also obtained cDNAs for the mouse orthologs of both Sulfs. We demonstrate that the proteins encoded by both classes of cDNAs are endoproteolytically processed in the secretory pathway and are released into conditioned medium of transfected CHO cells. We demonstrate that the mammalian Sulfs exhibit arylsulfatase activity with a pH optimum in the neutral range; moreover, they can remove sulfate from the C-6 position of glucosamine within specific subregions of intact heparin. Taken together, our results establish that the mammalian Sulfs are extracellular endosulfatases with strong potential for modulating the interactions of heparan sulfate proteoglycans in the extracellular microenvironment.

Citing Articles

Sulfatase modifying factor 2 as a predictive biomarker for urothelial carcinoma.

Kuo W, Lee Y, Liao J, Tseng C, Yang Y Discov Oncol. 2025; 16(1):126.

PMID: 39915362 PMC: 11803025. DOI: 10.1007/s12672-025-01859-y.


The extracellular heparan sulfatase SULF2 limits myeloid IFNβ signaling and Th17 responses in inflammatory arthritis.

Swart M, Redpath A, Ogbechi J, Cardenas R, Topping L, Compeer E Cell Mol Life Sci. 2024; 81(1):350.

PMID: 39141086 PMC: 11335274. DOI: 10.1007/s00018-024-05333-w.


Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications.

Ayub A, Hasan M, Mahmud Z, Hossain M, Kabir Y Med Oncol. 2024; 41(7):183.

PMID: 38902544 DOI: 10.1007/s12032-024-02417-2.


In vivo activities of heparan sulfate differentially modified by NDSTs during development.

Nakato E, Baker S, Kinoshita-Toyoda A, Knudsen C, Lu Y, Takemura M Proteoglycan Res. 2024; 2(1).

PMID: 38616954 PMC: 11011245. DOI: 10.1002/pgr2.17.


The Genetics behind Sulfation: Impact on Airway Remodeling.

Ntenti C, Papakonstantinou E, Fidani L, Stolz D, Goulas A J Pers Med. 2024; 14(3).

PMID: 38540990 PMC: 10971212. DOI: 10.3390/jpm14030248.


References
1.
Burset M, Seledtsov I, Solovyev V . SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res. 2000; 29(1):255-9. PMC: 29840. DOI: 10.1093/nar/29.1.255. View

2.
Esko J, Lindahl U . Molecular diversity of heparan sulfate. J Clin Invest. 2001; 108(2):169-73. PMC: 203033. DOI: 10.1172/JCI13530. View

3.
Gallagher J . Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest. 2001; 108(3):357-61. PMC: 209370. DOI: 10.1172/JCI13713. View

4.
Dhoot G, Gustafsson M, Ai X, Sun W, Standiford D, EMERSON Jr C . Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001; 293(5535):1663-6. DOI: 10.1126/science.293.5535.1663. View

5.
Wang X, Pei D . Shedding of membrane type matrix metalloproteinase 5 by a furin-type convertase: a potential mechanism for down-regulation. J Biol Chem. 2001; 276(38):35953-60. DOI: 10.1074/jbc.M103680200. View