» Articles » PMID: 12190309

Exploring the Role of Bromine at C(10) of (+)-4-[2-[4-(8-chloro-3,10-dibromo- 6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridin-11(R)-yl)-1-piperidinyl]-2- Oxoethyl]-1-piperidinecarboxamide (Sch-66336): the Discovery of Indolocycloheptapyridine...

Abstract

The 10-bromobenzocycloheptapyridyl farnesyl transferase inhibitor (FTI) Sch-66336 (1) is currently under clinical evaluation for the treatment of human cancers. During structure-activity relationship development leading to 1, 10-bromobenzocycloheptapyridyl FTIs were found to be more potent than analogous compounds lacking the 10-Br substituent. This potency enhancement was believed to be due, in part, to an increase in conformational rigidity as the 10-bromo substituent could restrict the conformation of the appended C(11) piperidyl substituent in an axial orientation. A novel and potent class of FTIs, represented by indolocycloheptapyridine Sch-207758 [(+)-10a], have been designed based on this principle. Although structural and thermodynamic results suggest that entropy plays a crucial role in the increased potency observed with (+)-10a through conformational constraints and solvation effects, the results also indicate that the indolocycloheptapyridine moiety in (+)-10a provides increased hydrophobic interactions with the protein through the addition of the indole group. This report details the X-ray structure and the thermodynamic and pharmacokinetic profiles of (+)-10a, as well as the synthesis of indolocycloheptapyridine FTIs and their potencies in biochemical and biological assays.

Citing Articles

Mutations in the zebrafish gene reveal a novel function for isoprenoids during red blood cell development.

Hernandez J, Castro V, Reyes-Nava N, Montes L, Quintana A Blood Adv. 2019; 3(8):1244-1254.

PMID: 30987969 PMC: 6482358. DOI: 10.1182/bloodadvances.2018024539.