Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen J, Czosnyka M
J Cereb Blood Flow Metab. 2024; 44(9):1480-1514.
PMID: 38688529
PMC: 11418733.
DOI: 10.1177/0271678X241249276.
Beqiri E, Placek M, Chu K, Donnelly J, Cucciolini G, Motroni V
Brain Spine. 2024; 4:102795.
PMID: 38601774
PMC: 11004690.
DOI: 10.1016/j.bas.2024.102795.
Brassard P, Roy M, Burma J, Labrecque L, Smirl J
Clin Auton Res. 2023; 33(6):791-810.
PMID: 37758907
DOI: 10.1007/s10286-023-00986-2.
Marmarelis V, Shin D, Hamner J, Tan C
Front Physiol. 2022; 13:1015544.
PMID: 36406984
PMC: 9666788.
DOI: 10.3389/fphys.2022.1015544.
Chacon M, Rojas-Pescio H, Penaloza S, Landerretche J
Entropy (Basel). 2022; 24(3).
PMID: 35327938
PMC: 8947420.
DOI: 10.3390/e24030428.
The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke.
Simpson D, Payne S, Panerai R
J Cereb Blood Flow Metab. 2021; 42(3):411-429.
PMID: 34279146
PMC: 8851676.
DOI: 10.1177/0271678X211029049.
Two-Tiered Response of Cardiorespiratory-Cerebrovascular Network to Orthostatic Challenge.
Mukli P, Nagy Z, Racz F, Portoro I, Hartmann A, Stylianou O
Front Physiol. 2021; 12:622569.
PMID: 33737882
PMC: 7960776.
DOI: 10.3389/fphys.2021.622569.
A Novel Nonlinear System Identification for Cerebral Autoregulation in Human: Computer Simulation and Validation.
Chertoff M, Billinger S, Perdomo S, Witte E, Ward J, Alwatban M
Ann Biomed Eng. 2019; 48(4):1207-1217.
PMID: 31873829
PMC: 8956359.
DOI: 10.1007/s10439-019-02442-7.
Dynamic Cerebral Autoregulation Reproducibility Is Affected by Physiological Variability.
Sanders M, Elting J, Panerai R, Aries M, Bor-Seng-Shu E, Caicedo A
Front Physiol. 2019; 10:865.
PMID: 31354518
PMC: 6634255.
DOI: 10.3389/fphys.2019.00865.
Cerebral blood flow variability in fibromyalgia syndrome: Relationships with emotional, clinical and functional variables.
Montoro C, Duschek S, Schuepbach D, Gandarillas M, Reyes del Paso G
PLoS One. 2018; 13(9):e0204267.
PMID: 30235315
PMC: 6147545.
DOI: 10.1371/journal.pone.0204267.
Non-linear models for the detection of impaired cerebral blood flow autoregulation.
Chacon M, Jara J, Miranda R, Katsogridakis E, Panerai R
PLoS One. 2018; 13(1):e0191825.
PMID: 29381724
PMC: 5790248.
DOI: 10.1371/journal.pone.0191825.
Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.
Placek M, Wachel P, Iskander D, Smielewski P, Uryga A, Mielczarek A
PLoS One. 2017; 12(7):e0181851.
PMID: 28750024
PMC: 5531479.
DOI: 10.1371/journal.pone.0181851.
Detection of Impaired Sympathetic Cerebrovascular Control Using Functional Biomarkers Based on Principal Dynamic Mode Analysis.
Saleem S, Tzeng Y, Kleijn W, Teal P
Front Physiol. 2017; 7:685.
PMID: 28119628
PMC: 5220091.
DOI: 10.3389/fphys.2016.00685.
Comparison of Model-Based Indices of Cerebral Autoregulation and Vasomotor Reactivity Using Transcranial Doppler versus Near-Infrared Spectroscopy in Patients with Amnestic Mild Cognitive Impairment.
Marmarelis V, Shin D, Tarumi T, Zhang R
J Alzheimers Dis. 2016; 56(1):89-105.
PMID: 27911329
PMC: 5240580.
DOI: 10.3233/JAD-161004.
Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
Geng K, Marmarelis V
IEEE Trans Neural Netw Learn Syst. 2016; 28(9):2196-2208.
PMID: 27352401
PMC: 5596897.
DOI: 10.1109/TNNLS.2016.2581141.
Analysis of Fluctuation in Cerebral Venous Oxygenation Using MR Imaging: Quantitative Evaluation of Vasomotor Function of Arterioles.
Tang M, Nishi K, Yamamoto T
Magn Reson Med Sci. 2016; 16(1):45-53.
PMID: 27151746
PMC: 5600043.
DOI: 10.2463/mrms.mp.2015-0156.
Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network.
Claassen J, Meel-van den Abeelen A, Simpson D, Panerai R
J Cereb Blood Flow Metab. 2016; 36(4):665-80.
PMID: 26782760
PMC: 4821028.
DOI: 10.1177/0271678X15626425.
Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans.
Saleem S, Teal P, Kleijn W, ODonnell T, Witter T, Tzeng Y
PLoS One. 2015; 10(9):e0139470.
PMID: 26421429
PMC: 4589242.
DOI: 10.1371/journal.pone.0139470.
Monitoring cerebral autoregulation after brain injury: multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy.
Highton D, Ghosh A, Tachtsidis I, Panovska-Griffiths J, Elwell C, Smith M
Anesth Analg. 2015; 121(1):198-205.
PMID: 25993387
PMC: 4957667.
DOI: 10.1213/ANE.0000000000000790.
System identification of point-process neural systems using probability based Volterra kernels.
Sandler R, Deadwyler S, Hampson R, Song D, Berger T, Marmarelis V
J Neurosci Methods. 2014; 240:179-92.
PMID: 25479231
PMC: 4286344.
DOI: 10.1016/j.jneumeth.2014.11.013.