Modeling of Corneal Surfaces with Radial Polynomials
Overview
Biophysics
Affiliations
We consider analytical modeling of the anterior corneal surface with a set of orthogonal basis functions that are a product of radial polynomials and angular functions. Several candidate basis functions were chosen from the repertoire of functions that are orthogonal in the unit circle and invariant in form with respect to rotation about the origin. In particular, it is shown that a set of functions that is referred herein as Bhatia-Wolf polynomials, represents a better and more robust alternative for modeling corneal elevation data than traditionally used Zernike polynomials. Examples of modeling corneal elevation are given for normal corneas and for abnormal corneas with significant distortion.
Lavric A, Beguni C, Zadobrischi E, Cailean A, Avatamanitei S Sensors (Basel). 2024; 24(15).
PMID: 39123881 PMC: 11314945. DOI: 10.3390/s24154834.
Influence of overnight orthokeratology lens fitting decentration on corneal topography reshaping.
Chen J, Huang W, Zhu R, Jiang J, Li Y Eye Vis (Lond). 2018; 5:5.
PMID: 29564358 PMC: 5853138. DOI: 10.1186/s40662-018-0100-7.
Morphometric analysis and classification of glaucomatous optic neuropathy using radial polynomials.
Twa M, Parthasarathy S, Johnson C, Bullimore M J Glaucoma. 2011; 21(5):302-12.
PMID: 21423035 PMC: 3163012. DOI: 10.1097/IJG.0b013e31820d7e6a.
Shu H, Luo L, Han G, Coatrieux J J Opt Soc Am A Opt Image Sci Vis. 2006; 23(8):1960-6.
PMID: 16835654 PMC: 1961626. DOI: 10.1364/josaa.23.001960.
Gruenauer-Kloevekorn C, Kloevekorn-Fischer U, Duncker G Br J Ophthalmol. 2005; 89(12):1601-8.
PMID: 16299140 PMC: 1772965. DOI: 10.1136/bjo.2005.069500.