Optimizing of Recurrence Plots for Noise Reduction
Overview
Physiology
Public Health
Affiliations
We propose a way to automatically detect the best neighborhood size for a local projective noise reduction filter, where a typical problem is the proper identification of the noise level. Here we make use of concepts from the recurrence quantification analysis in order to adaptively tune the filter along the incoming time series. We define an index, to be computed via recurrence plots, whose minimum gives a clear indication of the best size of the neighborhood in the embedding space. Comparison of the local projective noise reduction filter using this optimization scheme with the state of the art is also provided.
Cheng T, Jiang F, Li Q, Zeng J, Zhang B Sensors (Basel). 2022; 22(15).
PMID: 35898020 PMC: 9331962. DOI: 10.3390/s22155516.
Nkomidio A, Ngamga E, Nbendjo B, Kurths J, Marwan N Entropy (Basel). 2022; 24(2).
PMID: 35205531 PMC: 8871468. DOI: 10.3390/e24020235.
Martin-Gonzalez S, Navarro-Mesa J, Julia-Serda G, Ramirez-Avila G, Ravelo-Garcia A PLoS One. 2018; 13(4):e0194462.
PMID: 29621264 PMC: 5886413. DOI: 10.1371/journal.pone.0194462.
Recurrence Quantification for the Analysis of Coupled Processes in Aging.
Brick T, Gray A, Staples A J Gerontol B Psychol Sci Soc Sci. 2017; 73(1):134-147.
PMID: 28958046 PMC: 5927149. DOI: 10.1093/geronb/gbx018.
Is stretching and folding feature of chaotic trajectories useful in adaptive local projection?.
Jafari S, Golpayegani S, Jafari A J Med Signals Sens. 2013; 2(2):112-3.
PMID: 23626947 PMC: 3632041.