Matsuo R, Kwon H, Takishita K, Nishi T, Matsuo Y
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024; 211(1):19-34.
PMID: 39120725
DOI: 10.1007/s00359-024-01712-7.
Luo D, Silverman D, Frederiksen R, Adhikari R, Cao L, Oatis J
Curr Biol. 2020; 30(24):4921-4931.e5.
PMID: 33065015
PMC: 8561704.
DOI: 10.1016/j.cub.2020.09.062.
Silverman D, Chai Z, Yue W, Ramisetty S, Lokappa S, Sakai K
Proc Natl Acad Sci U S A. 2020; 117(37):23033-23043.
PMID: 32873651
PMC: 7502766.
DOI: 10.1073/pnas.2010417117.
Sato S, Jastrzebska B, Engel A, Palczewski K, Kefalov V
J Neurosci. 2018; 39(2):212-223.
PMID: 30459230
PMC: 6325258.
DOI: 10.1523/JNEUROSCI.1980-18.2018.
Yue W, Frederiksen R, Ren X, Luo D, Yamashita T, Shichida Y
Elife. 2017; 6.
PMID: 28186874
PMC: 5302883.
DOI: 10.7554/eLife.18492.
Measurement of Slow Spontaneous Release of 11-cis-Retinal from Rhodopsin.
Tian H, Sakmar T, Huber T
Biophys J. 2017; 112(1):153-161.
PMID: 28076806
PMC: 5232893.
DOI: 10.1016/j.bpj.2016.12.005.
Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state.
Schafer C, Fay J, Janz J, Farrens D
Proc Natl Acad Sci U S A. 2016; 113(42):11961-11966.
PMID: 27702898
PMC: 5081659.
DOI: 10.1073/pnas.1606347113.
cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
Sato S, Kefalov V
J Physiol. 2016; 594(22):6753-6765.
PMID: 27385534
PMC: 5108915.
DOI: 10.1113/JP272831.
The role of the non-covalent β-ionone-ring binding site in rhodopsin: historical and physiological perspective.
Matsumoto H, Iwasa T, Yoshizawa T
Photochem Photobiol Sci. 2015; 14(11):1932-40.
PMID: 26257274
PMC: 4626282.
DOI: 10.1039/c5pp00158g.
New insights into retinoid metabolism and cycling within the retina.
Tang P, Kono M, Koutalos Y, Ablonczy Z, Crouch R
Prog Retin Eye Res. 2012; 32:48-63.
PMID: 23063666
PMC: 3746031.
DOI: 10.1016/j.preteyeres.2012.09.002.
RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model.
Tang P, Buhusi M, Ma J, Crouch R
J Neurosci. 2011; 31(50):18618-26.
PMID: 22171060
PMC: 3297673.
DOI: 10.1523/JNEUROSCI.4265-11.2011.
Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.
Kefalov V
J Biol Chem. 2011; 287(3):1635-41.
PMID: 22074928
PMC: 3265844.
DOI: 10.1074/jbc.R111.303008.
Activation of visual pigments by light and heat.
Luo D, Yue W, Ala-Laurila P, Yau K
Science. 2011; 332(6035):1307-12.
PMID: 21659602
PMC: 4349410.
DOI: 10.1126/science.1200172.
Probing human red cone opsin activity with retinal analogues.
Kono M, Crouch R
J Nat Prod. 2011; 74(3):391-4.
PMID: 21314100
PMC: 3064742.
DOI: 10.1021/np100749j.
Assays for inverse agonists in the visual system.
Kono M
Methods Enzymol. 2010; 485:213-24.
PMID: 21050919
PMC: 3697084.
DOI: 10.1016/B978-0-12-381296-4.00012-9.
Binding of more than one retinoid to visual opsins.
Makino C, Riley C, Looney J, Crouch R, Okada T
Biophys J. 2010; 99(7):2366-73.
PMID: 20923672
PMC: 3042582.
DOI: 10.1016/j.bpj.2010.08.003.
Physiological studies of the interaction between opsin and chromophore in rod and cone visual pigments.
Kefalov V, Cornwall M, Fain G
Methods Mol Biol. 2010; 652:95-114.
PMID: 20552424
PMC: 3561676.
DOI: 10.1007/978-1-60327-325-1_5.
In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists.
Kono M, Crouch R
Methods Mol Biol. 2010; 652:85-94.
PMID: 20552423
PMC: 3694563.
DOI: 10.1007/978-1-60327-325-1_4.
Intra-retinal visual cycle required for rapid and complete cone dark adaptation.
Wang J, Estevez M, Cornwall M, Kefalov V
Nat Neurosci. 2009; 12(3):295-302.
PMID: 19182795
PMC: 2707787.
DOI: 10.1038/nn.2258.
How vision begins: an odyssey.
Luo D, Xue T, Yau K
Proc Natl Acad Sci U S A. 2008; 105(29):9855-62.
PMID: 18632568
PMC: 2481352.
DOI: 10.1073/pnas.0708405105.