» Articles » PMID: 11781089

Role of Residue 147 in the Gene Regulatory Function of the Escherichia Coli Purine Repressor

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2002 Jan 10
PMID 11781089
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The crystal structures of corepressor-bound and free Escherichia coli purine repressor (PurR) have delineated the roles of several residues in corepressor binding and specificity and the intramolecular signal transduction (allosterism) of this LacI/GalR family member. From these structures, residue W147 was implicated as a key component of the allosteric response, but in many members of the LacI/GalR family, position 147 is occupied by an arginine. To understand the role of this tryptophan at position 147, three proteins, substituted by phenylalanine (W147F), alanine (W147A), or arginine (W147R), were constructed and characterized in vivo and in vitro, and their structures were determined. W147F displays a decreased affinity for corepressor and is a poor repressor in vivo. W147A and W147R, on the other hand, are super repressors and bind corepressor 13.6 and 7.9 times more tightly, respectively, than wild-type. Each mutant PurR-hypoxanthine-purF operator holo complex crystallizes isomorphously to wild-type. Whereas the apo corepressor binding domain (CBD) of W147F crystallizes under those conditions used for the wild-type protein, neither the apo CBD of W147R nor W147A crystallizes, although screened extensively for new crystal forms. Structures of the holo repressor mutants have been solved to resolutions between 2.5 and 2.9 A, and the structure of the apo CBD of W147F has been solved to 2.4 A resolution. These structures provide insight into the altered biochemical properties and physiological functions of these mutants, which appear to depend on the sometimes subtle preference for one conformation (apo vs holo) over the other.

Citing Articles

The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine.

Zhao S, Shi T, Li L, Chen Z, Li C, Yu Z Microb Cell Fact. 2024; 23(1):309.

PMID: 39543621 PMC: 11566304. DOI: 10.1186/s12934-024-02576-x.


Neuromodulators as Interdomain Signaling Molecules Capable of Occupying Effector Binding Sites in Bacterial Transcription Factors.

Purtov Y, Ozoline O Int J Mol Sci. 2023; 24(21).

PMID: 37958845 PMC: 10647483. DOI: 10.3390/ijms242115863.


Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia.

Xu T, Tao X, He H, Kempher M, Zhang S, Liu X ISME J. 2023; 17(6):823-835.

PMID: 36899058 PMC: 10203250. DOI: 10.1038/s41396-023-01392-2.


Vibrio cholerae FruR facilitates binding of RNA polymerase to the fru promoter in the presence of fructose 1-phosphate.

Yoon C, Kang D, Kim M, Seok Y Nucleic Acids Res. 2021; 49(3):1397-1410.

PMID: 33476373 PMC: 7897506. DOI: 10.1093/nar/gkab013.


Site-Specific Mutations of GalR Affect Galactose Metabolism in Streptococcus pneumoniae.

McLean K, Tikhomirova A, Brazel E, Legendre S, Haasbroek G, Minhas V J Bacteriol. 2020; 203(1).

PMID: 33046563 PMC: 7723958. DOI: 10.1128/JB.00180-20.