Chen J, Bai Y, Huang Y, Cui M, Wang Y, Gu Z
Sci Adv. 2024; 10(50):eadr1743.
PMID: 39671501
PMC: 11641110.
DOI: 10.1126/sciadv.adr1743.
Rossmanith W, Giege P, Hartmann R
J Biol Chem. 2024; 300(3):105731.
PMID: 38336295
PMC: 10941002.
DOI: 10.1016/j.jbc.2024.105731.
Wang Z, Xu X, Li X, Fang J, Huang Z, Zhang M
J Fungi (Basel). 2023; 9(10).
PMID: 37888286
PMC: 10608323.
DOI: 10.3390/jof9101030.
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H
J Biochem. 2023; 175(1):43-56.
PMID: 37844264
PMC: 11640301.
DOI: 10.1093/jb/mvad076.
Jedrzejewski M, Belza B, Lewandowska I, Sadlej M, Perlinska A, Augustyniak R
Comput Struct Biotechnol J. 2023; 21:3999-4008.
PMID: 37649713
PMC: 10462857.
DOI: 10.1016/j.csbj.2023.08.001.
Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA.
Hori H
Genes (Basel). 2023; 14(2).
PMID: 36833309
PMC: 9957541.
DOI: 10.3390/genes14020382.
tRNA mG9 modification depends on substrate-specific RNA conformational changes induced by the methyltransferase Trm10.
Strassler S, Bowles I, Krishnamohan A, Kim H, Edgington C, Kuiper E
bioRxiv. 2023; .
PMID: 36778341
PMC: 9915607.
DOI: 10.1101/2023.02.01.526536.
Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.
Strassler S, Bowles I, Dey D, Jackman J, Conn G
J Biol Chem. 2022; 298(10):102393.
PMID: 35988649
PMC: 9508554.
DOI: 10.1016/j.jbc.2022.102393.
Chemical Modifications of Ribosomal RNA.
Sharma S, Entian K
Methods Mol Biol. 2022; 2533:149-166.
PMID: 35796987
PMC: 9761533.
DOI: 10.1007/978-1-0716-2501-9_9.
The open reading frame encodes the SPOUT methyltransferase RlmP forming 2'--methylguanosine at position 2553 in the A-loop of 23S rRNA.
Roovers M, Labar G, Wolff P, Feller A, Van Elder D, Soin R
RNA. 2022; 28(9):1185-1196.
PMID: 35710145
PMC: 9380741.
DOI: 10.1261/rna.079131.122.
Potential therapeutic targets from (): recently reported efforts towards the discovery of novel antibacterial agents to treat infections.
Addison W, Frederickson M, Coyne A, Abell C
RSC Med Chem. 2022; 13(4):392-404.
PMID: 35647542
PMC: 9020770.
DOI: 10.1039/d1md00359c.
Emergence of the primordial pre-60S from the 90S pre-ribosome.
Ismail S, Flemming D, Thoms M, Gomes-Filho J, Randau L, Beckmann R
Cell Rep. 2022; 39(1):110640.
PMID: 35385737
PMC: 8994135.
DOI: 10.1016/j.celrep.2022.110640.
Fragment-based discovery of a new class of inhibitors targeting mycobacterial tRNA modification.
Thomas S, Whitehouse A, Brown K, Burbaud S, Belardinelli J, Sangen J
Nucleic Acids Res. 2020; 48(14):8099-8112.
PMID: 32602532
PMC: 7641325.
DOI: 10.1093/nar/gkaa539.
The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development.
Zou M, Mu Y, Chai X, Ouyang M, Yu L, Zhang L
Nucleic Acids Res. 2020; 48(6):3195-3210.
PMID: 32095829
PMC: 7102989.
DOI: 10.1093/nar/gkaa129.
Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives.
Burroughs A, Glasner M, Barry K, Taylor E, Aravind L
J Biol Chem. 2019; 294(26):10211-10235.
PMID: 31092555
PMC: 6664185.
DOI: 10.1074/jbc.RA119.007595.
Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium .
Hori H
Front Genet. 2019; 10:204.
PMID: 30906314
PMC: 6418473.
DOI: 10.3389/fgene.2019.00204.
Codon-Specific Translation by mG37 Methylation of tRNA.
Hou Y, Masuda I, Gamper H
Front Genet. 2019; 9:713.
PMID: 30687389
PMC: 6335274.
DOI: 10.3389/fgene.2018.00713.
A Family Divided: Distinct Structural and Mechanistic Features of the SpoU-TrmD (SPOUT) Methyltransferase Superfamily.
Krishnamohan A, Jackman J
Biochemistry. 2018; 58(5):336-345.
PMID: 30457841
PMC: 6541868.
DOI: 10.1021/acs.biochem.8b01047.
Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes.
Oerum S, Roovers M, Rambo R, Kopec J, Bailey H, Fitzpatrick F
J Biol Chem. 2018; 293(33):12862-12876.
PMID: 29880640
PMC: 6102140.
DOI: 10.1074/jbc.RA117.001286.
Structural and biochemical analysis of the dual-specificity Trm10 enzyme from prompts reconsideration of its catalytic mechanism.
Singh R, Feller A, Roovers M, Van Elder D, Wauters L, Droogmans L
RNA. 2018; 24(8):1080-1092.
PMID: 29848639
PMC: 6049504.
DOI: 10.1261/rna.064345.117.