» Articles » PMID: 11687647

A Paradox Resolved: Sulfide Acquisition by Roots of Seep Tubeworms Sustains Net Chemoautotrophy

Overview
Specialty Science
Date 2001 Nov 1
PMID 11687647
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Vestimentiferan tubeworms, symbiotic with sulfur-oxidizing chemoautotrophic bacteria, dominate many cold-seep sites in the Gulf of Mexico. The most abundant vestimentiferan species at these sites, Lamellibrachia cf. luymesi, grows quite slowly to lengths exceeding 2 meters and lives in excess of 170-250 years. L. cf. luymesi can grow a posterior extension of its tube and tissue, termed a "root," down into sulfidic sediments below its point of original attachment. This extension can be longer than the anterior portion of the animal. Here we show, using methods optimized for detection of hydrogen sulfide down to 0.1 microM in seawater, that hydrogen sulfide was never detected around the plumes of large cold-seep vestimentiferans and rarely detectable only around the bases of mature aggregations. Respiration experiments, which exposed the root portions of L. cf. luymesi to sulfide concentrations between 51-561 microM, demonstrate that L. cf. luymesi use their roots as a respiratory surface to acquire sulfide at an average rate of 4.1 micromol x g(-1) x h(-1). Net dissolved inorganic carbon uptake across the plume of the tubeworms was shown to occur in response to exposure of the posterior (root) portion of the worms to sulfide, demonstrating that sulfide acquisition by roots of the seep vestimentiferan L. cf. luymesi can be sufficient to fuel net autotrophic total dissolved inorganic carbon uptake.

Citing Articles

Genomic and transcriptomic analyses illuminate the molecular basis of the unique lifestyle of a tubeworm, Lamellibrachia satsuma.

Uchida T, Yoshioka Y, Yoshida Y, Fujie M, Yamaki A, Sasaki A DNA Res. 2023; 30(4).

PMID: 37358253 PMC: 10291997. DOI: 10.1093/dnares/dsad014.


Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi.

Shi H, Ruan L, Chen Z, Liao Y, Wu W, Liu L BMC Genomics. 2023; 24(1):175.

PMID: 37020304 PMC: 10077716. DOI: 10.1186/s12864-023-09267-8.


Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia satsuma.

Patra A, Kwon Y, Yang Y J Microbiol. 2022; 60(9):916-927.

PMID: 35913594 DOI: 10.1007/s12275-022-2057-4.


Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces.

Paredes G, Viehboeck T, Lee R, Palatinszky M, Mausz M, Reipert S mSystems. 2021; 6(3):e0118620.

PMID: 34058098 PMC: 8269255. DOI: 10.1128/mSystems.01186-20.


Trophic structure of the macrofauna associated to deep-vents of the southern Gulf of California: Pescadero Basin and Pescadero Transform Fault.

Salcedo D, Soto L, Paduan J PLoS One. 2019; 14(11):e0224698.

PMID: 31689305 PMC: 6830743. DOI: 10.1371/journal.pone.0224698.


References
1.
Goffredi S, Childress J, Lallier F, Desaulniers N . The ionic composition of the hydrothermal vent tube worm Riftia pachyptila: evidence for the elimination of SO2-4SO and H+ and for a Cl-/HCO-3HCO shift. Physiol Biochem Zool. 1999; 72(3):296-306. DOI: 10.1086/316664. View

2.
Julian D, Gaill F, Wood E, Arp A, Fisher C . Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J Exp Biol. 1999; 202(Pt 17):2245-57. DOI: 10.1242/jeb.202.17.2245. View

3.
Bergquist D, Williams F, Fisher C . Longevity record for deep-sea invertebrate. Nature. 2000; 403(6769):499-500. DOI: 10.1038/35000647. View

4.
Girguis P, Lee R, Desaulniers N, Childress J, Pospesel M, Felbeck H . Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl Environ Microbiol. 2000; 66(7):2783-90. PMC: 92073. DOI: 10.1128/AEM.66.7.2783-2790.2000. View

5.
Goffredi S, Girguis P, Childress J, Desaulniers N . Physiological Functioning of Carbonic Anhydrase in the Hydrothermal Vent Tubeworm Riftia Pachyptila. Biol Bull. 2017; 196(3):257-264. DOI: 10.2307/1542950. View