Jian S, Huang Y, Chen D, Zhong C
Front Plant Sci. 2025; 15():1522481.
PMID: 39830946
PMC: 11739077.
DOI: 10.3389/fpls.2024.1522481.
Kappelmann J, Klein B, Papenfuss M, Lange J, Blombach B, Takors R
Front Bioeng Biotechnol. 2021; 8:602936.
PMID: 33553115
PMC: 7855459.
DOI: 10.3389/fbioe.2020.602936.
Luo G, Zhao N, Jiang S, Zheng S
Biotechnol Lett. 2020; 43(1):297-306.
PMID: 32936374
DOI: 10.1007/s10529-020-03000-1.
Xu J, Ruan H, Yu H, Liu L, Zhang W
Microb Cell Fact. 2020; 19(1):39.
PMID: 32070345
PMC: 7029506.
DOI: 10.1186/s12934-020-1294-7.
Xu J, Yu H, Han M, Liu L, Zhang W
J Ind Microbiol Biotechnol. 2019; 46(7):937-949.
PMID: 30937555
DOI: 10.1007/s10295-019-02170-w.
The anaplerotic node is essential for the intracellular survival of .
Basu P, Sandhu N, Bhatt A, Singh A, Balhana R, Gobe I
J Biol Chem. 2018; 293(15):5695-5704.
PMID: 29475946
PMC: 5900758.
DOI: 10.1074/jbc.RA118.001839.
Saccharomyces cerevisiae Forms D-2-Hydroxyglutarate and Couples Its Degradation to D-Lactate Formation via a Cytosolic Transhydrogenase.
Becker-Kettern J, Paczia N, Conrotte J, Kay D, Guignard C, Jung P
J Biol Chem. 2016; 291(12):6036-58.
PMID: 26774271
PMC: 4813551.
DOI: 10.1074/jbc.M115.704494.
Fluxome study of Pseudomonas fluorescens reveals major reorganisation of carbon flux through central metabolic pathways in response to inactivation of the anti-sigma factor MucA.
Lien S, Niedenfuhr S, Sletta H, Noh K, Bruheim P
BMC Syst Biol. 2015; 9:6.
PMID: 25889900
PMC: 4351692.
DOI: 10.1186/s12918-015-0148-0.
Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum.
Chen Z, Bommareddy R, Frank D, Rappert S, Zeng A
Appl Environ Microbiol. 2013; 80(4):1388-93.
PMID: 24334667
PMC: 3911046.
DOI: 10.1128/AEM.03535-13.
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner S, Seibold G, Henrich A, Kramer R, Wendisch V
Appl Environ Microbiol. 2011; 77(11):3571-81.
PMID: 21478323
PMC: 3127631.
DOI: 10.1128/AEM.02713-10.
Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection.
Marrero J, Rhee K, Schnappinger D, Pethe K, Ehrt S
Proc Natl Acad Sci U S A. 2010; 107(21):9819-24.
PMID: 20439709
PMC: 2906907.
DOI: 10.1073/pnas.1000715107.
Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis.
Vital W, Rezende G, Abreu L, Moraes J, Lemos F, da Silva Vaz Jr I
BMC Dev Biol. 2010; 10:25.
PMID: 20184739
PMC: 2838828.
DOI: 10.1186/1471-213X-10-25.
Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum.
Becker J, Klopprogge C, Schroder H, Wittmann C
Appl Environ Microbiol. 2009; 75(24):7866-9.
PMID: 19820141
PMC: 2794105.
DOI: 10.1128/AEM.01942-09.
Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis.
Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H
Microb Cell Fact. 2007; 6:19.
PMID: 17587457
PMC: 1919393.
DOI: 10.1186/1475-2859-6-19.
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner M, Holatko J, Bartek T, Oldiges M, Eikmanns B
Appl Environ Microbiol. 2007; 73(7):2079-84.
PMID: 17293513
PMC: 1855657.
DOI: 10.1128/AEM.02826-06.
Metabolic networks in motion: 13C-based flux analysis.
Sauer U
Mol Syst Biol. 2006; 2:62.
PMID: 17102807
PMC: 1682028.
DOI: 10.1038/msb4100109.
Pyruvate:quinone oxidoreductase from Corynebacterium glutamicum: purification and biochemical characterization.
Schreiner M, Eikmanns B
J Bacteriol. 2005; 187(3):862-71.
PMID: 15659664
PMC: 545707.
DOI: 10.1128/JB.187.3.862-871.2005.
First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
Fukuda W, Fukui T, Atomi H, Imanaka T
J Bacteriol. 2004; 186(14):4620-7.
PMID: 15231795
PMC: 438638.
DOI: 10.1128/JB.186.14.4620-4627.2004.
Co-expression of five genes in E coli for L-phenylalanine in Brevibacterium flavum.
Wu Y, Jiang P, Fan C, Wang J, Shang L, Huang W
World J Gastroenterol. 2003; 9(2):342-6.
PMID: 12532463
PMC: 4611343.
DOI: 10.3748/wjg.v9.i2.342.