» Articles » PMID: 11563965

Lipid Modification of the Cu,Zn Superoxide Dismutase from Mycobacterium Tuberculosis

Overview
Journal Biochem J
Specialty Biochemistry
Date 2001 Sep 21
PMID 11563965
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

The leader sequence of Mycobacterium tuberculosis Cu,Zn superoxide dismutase (Cu,ZnSOD) contains a prokaryotic membrane lipoprotein attachment site. In the present study, we have found that the protein, which exhibits detectable SOD activity, is lipid-modified and associated with the bacterial membrane when expressed either in M. tuberculosis or in Escherichia coli. These results provide the first demonstration of lipid modification of a Cu,ZnSOD. An analysis of the sodC genes present in available databases indicates that the same signal for lipid modification is also present in the sodC gene products from other mycobacteria and Gram-positive bacteria and, uniquely, in two distinct sodC gene products from the Gram-negative bacterium Salmonella typhimurium. Evidence is also provided for an up-regulation of M. tuberculosis sodC in response to phagocytosis by human macrophages, suggesting that Cu,ZnSOD is involved in the mechanisms that facilitate mycobacterial intracellular growth.

Citing Articles

Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family.

Frye K, Sendra K, Waldron K, Kehl-Fie T J Inorg Biochem. 2022; 230:111748.

PMID: 35151099 PMC: 9112591. DOI: 10.1016/j.jinorgbio.2022.111748.


Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM.

Bendre A, Peters P, Kumar J J Membr Biol. 2021; 254(3):321-341.

PMID: 33954837 PMC: 8099146. DOI: 10.1007/s00232-021-00179-w.


Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens.

Schatzman S, Culotta V ACS Infect Dis. 2018; 4(6):893-903.

PMID: 29517910 PMC: 5993627. DOI: 10.1021/acsinfecdis.8b00026.


Tat-dependent translocation of an F420-binding protein of Mycobacterium tuberculosis.

Bashiri G, Perkowski E, Turner A, Feltcher M, Braunstein M, Baker E PLoS One. 2012; 7(10):e45003.

PMID: 23110042 PMC: 3478262. DOI: 10.1371/journal.pone.0045003.


Virulence factors of the Mycobacterium tuberculosis complex.

Forrellad M, Klepp L, Gioffre A, Sabio Y Garcia J, Morbidoni H, de la Paz Santangelo M Virulence. 2012; 4(1):3-66.

PMID: 23076359 PMC: 3544749. DOI: 10.4161/viru.22329.


References
1.
Takase I, Ishino F, Wachi M, Kamata H, Doi M, Asoh S . Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome. J Bacteriol. 1987; 169(12):5692-9. PMC: 214053. DOI: 10.1128/jb.169.12.5692-5699.1987. View

2.
FARRANT J, Sansone A, Canvin J, Pallen M, Langford P, Wallis T . Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol Microbiol. 1997; 25(4):785-96. DOI: 10.1046/j.1365-2958.1997.5151877.x. View

3.
Wilks K, Dunn K, FARRANT J, Reddin K, Gorringe A, Langford P . Periplasmic superoxide dismutase in meningococcal pathogenicity. Infect Immun. 1998; 66(1):213-7. PMC: 107879. DOI: 10.1128/IAI.66.1.213-217.1998. View

4.
Raynaud C, Etienne G, Peyron P, Laneelle M, Daffe M . Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology (Reading). 1998; 144 ( Pt 2):577-587. DOI: 10.1099/00221287-144-2-577. View

5.
Battistoni A, Donnarumma G, Greco R, Valenti P, Rotilio G . Overexpression of a hydrogen peroxide-resistant periplasmic Cu,Zn superoxide dismutase protects Escherichia coli from macrophage killing. Biochem Biophys Res Commun. 1998; 243(3):804-7. DOI: 10.1006/bbrc.1998.8182. View