» Articles » PMID: 11544196

Drosophila Euchromatic LTR Retrotransposons Are Much Younger Than the Host Species in Which They Reside

Overview
Journal Genome Res
Specialty Genetics
Date 2001 Sep 7
PMID 11544196
Citations 87
Authors
Affiliations
Soon will be listed here.
Abstract

The recent release of the complete euchromatic genome sequence of Drosophila melanogaster offers a unique opportunity to explore the evolutionary history of transposable elements (TEs) within the genome of a higher eukaryote. In this report, we describe the annotation and phylogenetic comparison of 178 full-length long terminal repeat (LTR) retrotransposons from the sequenced component of the D. melanogaster genome. We report the characterization of 17 LTR retrotransposon families described previously and five newly discovered element families. Phylogenetically, these families can be divided into three distinct lineages that consist of members from the canonical Copia and Gypsy groups as well as a newly discovered third group containing BEL, mazi, and roo elements. Each family consists of members with average pairwise identities > or =99% at the nucleotide level, indicating they may be the products of recent transposition events. Consistent with the recent transposition hypothesis, we found that 70% (125/178) of the elements (across all families) have identical intra-element LTRs. Using the synonymous substitution rate that has been calculated previously for Drosophila (.016 substitutions per site per million years) and the intra-element LTR divergence calculated here, the average age of the remaining 30% (53/178) of the elements was found to be 137,000 +/-89,000 yr. Collectively, these results indicate that many full-length LTR retrotransposons present in the D. melanogaster genome have transposed well after this species diverged from its closest relative Drosophila simulans, 2.3 +/-.3 million years ago.

Citing Articles

Chromosome-level genome assembly and improved annotation of onion genome (Allium cepa L.).

Cho H, Jung M, Lee S, Park J, Zoclanclounon Y, Kim C Sci Data. 2025; 12(1):336.

PMID: 40011550 PMC: 11865573. DOI: 10.1038/s41597-025-04635-3.


Chromosome-level assembly for the complex genome of land hermit crab Coenobita brevimanus.

Wang Z, Wang G, Li H, Jiang H, Sun Y, Han G Sci Data. 2024; 11(1):1190.

PMID: 39488506 PMC: 11531507. DOI: 10.1038/s41597-024-04031-3.


FishTEDB 2.0: an update fish transposable element (TE) database with new functions to facilitate TE research.

Shao F, Zeng M, Xu X, Zhang H, Peng Z Database (Oxford). 2024; 2024.

PMID: 38829853 PMC: 11146639. DOI: 10.1093/database/baae044.


Rapid evolution of piRNA clusters in the ovary.

Srivastav S, Feschotte C, Clark A Genome Res. 2024; 34(5):711-724.

PMID: 38749655 PMC: 11216404. DOI: 10.1101/gr.278062.123.


Genomes of historical specimens reveal multiple invasions of LTR retrotransposons in during the 19th century.

Scarpa A, Pianezza R, Wierzbicki F, Kofler R Proc Natl Acad Sci U S A. 2024; 121(15):e2313866121.

PMID: 38564639 PMC: 11009621. DOI: 10.1073/pnas.2313866121.


References
1.
Cook J, Martin J, Lewin A, Sinden R, Tristem M . Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol Biol. 2000; 9(1):109-17. DOI: 10.1046/j.1365-2583.2000.00167.x. View

2.
Benson D, Lipman D, Ostell J, Rapp B, Wheeler D . GenBank. Nucleic Acids Res. 1999; 28(1):15-8. PMC: 102453. DOI: 10.1093/nar/28.1.15. View

3.
Yoder J, Walsh C, Bestor T . Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997; 13(8):335-40. DOI: 10.1016/s0168-9525(97)01181-5. View

4.
Costas J, Naveira H . Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol. 2000; 17(2):320-30. DOI: 10.1093/oxfordjournals.molbev.a026312. View

5.
Bowen N, McDonald J . Genomic analysis of Caenorhabditis elegans reveals ancient families of retroviral-like elements. Genome Res. 1999; 9(10):924-35. DOI: 10.1101/gr.9.10.924. View