Toyonaga T, Kato T, Kawamoto A, Miyata T, Kawakami K, Fujita J
Sci Adv. 2025; 11(9):eadr9319.
PMID: 40009674
PMC: 11864180.
DOI: 10.1126/sciadv.adr9319.
Bukhari Z, Frasch W
Commun Chem. 2025; 8(1):52.
PMID: 39984644
PMC: 11845608.
DOI: 10.1038/s42004-025-01443-z.
McCaig C
Rev Physiol Biochem Pharmacol. 2025; 187():419-452.
PMID: 39838021
DOI: 10.1007/978-3-031-68827-0_20.
Nath S
Theory Biosci. 2024; 144(1):81-93.
PMID: 39709580
DOI: 10.1007/s12064-024-00434-3.
Marr K, Korenchan D, Jerschow A
J Phys Chem B. 2024; 128(37):8966-8973.
PMID: 39254719
PMC: 11421072.
DOI: 10.1021/acs.jpcb.4c02118.
2-Site versus 3-site models of ATP hydrolysis by F-ATPase: definitive mathematical proof using combinatorics and conservation equations.
Nath S
Theory Biosci. 2024; 143(3):217-227.
PMID: 39078560
DOI: 10.1007/s12064-024-00421-8.
Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by FF-ATP Synthase.
Nath S
Molecules. 2023; 28(22).
PMID: 38005208
PMC: 10673332.
DOI: 10.3390/molecules28227486.
Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F-ATPase.
Nath S
Biomolecules. 2023; 13(11).
PMID: 38002278
PMC: 10669602.
DOI: 10.3390/biom13111596.
Angle-dependent rotation velocity consistent with ADP release in bacterial F-ATPase.
Suiter N, Volkan-Kacso S
Front Mol Biosci. 2023; 10:1184249.
PMID: 37602322
PMC: 10433373.
DOI: 10.3389/fmolb.2023.1184249.
Repurposing of Tibolone in Alzheimer's Disease.
Barreto G
Biomolecules. 2023; 13(7).
PMID: 37509151
PMC: 10377087.
DOI: 10.3390/biom13071115.
Mechanism of ATP hydrolysis dependent rotation of bacterial ATP synthase.
Nakano A, Kishikawa J, Mitsuoka K, Yokoyama K
Nat Commun. 2023; 14(1):4090.
PMID: 37429854
PMC: 10333338.
DOI: 10.1038/s41467-023-39742-5.
Beyond binding change: the molecular mechanism of ATP hydrolysis by F-ATPase and its biochemical consequences.
Nath S
Front Chem. 2023; 11:1058500.
PMID: 37324562
PMC: 10266426.
DOI: 10.3389/fchem.2023.1058500.
Rotary mechanism of V/A-ATPases-how is ATP hydrolysis converted into a mechanical step rotation in rotary ATPases?.
Yokoyama K
Front Mol Biosci. 2023; 10:1176114.
PMID: 37168257
PMC: 10166205.
DOI: 10.3389/fmolb.2023.1176114.
Structural basis of unisite catalysis of bacterial FF-ATPase.
Nakano A, Kishikawa J, Nakanishi A, Mitsuoka K, Yokoyama K
PNAS Nexus. 2023; 1(3):pgac116.
PMID: 36741449
PMC: 9896953.
DOI: 10.1093/pnasnexus/pgac116.
Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity.
Kozlova M, Shalaeva D, Dibrova D, Mulkidjanian A
Biomolecules. 2022; 12(10).
PMID: 36291556
PMC: 9599734.
DOI: 10.3390/biom12101346.
Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases.
Kozlova M, Shalaeva D, Dibrova D, Mulkidjanian A
Biomolecules. 2022; 12(10).
PMID: 36291554
PMC: 9599529.
DOI: 10.3390/biom12101345.
FF ATP synthase molecular motor mechanisms.
Frasch W, Bukhari Z, Yanagisawa S
Front Microbiol. 2022; 13:965620.
PMID: 36081786
PMC: 9447477.
DOI: 10.3389/fmicb.2022.965620.
Revealing a Hidden Intermediate of Rotatory Catalysis with X-ray Crystallography and Molecular Simulations.
Shekhar M, Gupta C, Suzuki K, Chan C, Murata T, Singharoy A
ACS Cent Sci. 2022; 8(7):915-925.
PMID: 35912346
PMC: 9336149.
DOI: 10.1021/acscentsci.1c01599.
Eraldo Antonini Lectures, 1983-2019.
Brunori M
Biol Direct. 2022; 17(1):18.
PMID: 35841054
PMC: 9283839.
DOI: 10.1186/s13062-022-00330-0.
How Does F-ATPase Generate Torque?: Analysis From Cryo-Electron Microscopy and Rotational Catalysis of Thermophilic F.
Noji H, Ueno H
Front Microbiol. 2022; 13:904084.
PMID: 35602057
PMC: 9120768.
DOI: 10.3389/fmicb.2022.904084.