» Articles » PMID: 11483495

X-ray Structure of HPr Kinase: a Bacterial Protein Kinase with a P-loop Nucleotide-binding Domain

Overview
Journal EMBO J
Date 2001 Aug 3
PMID 11483495
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

HPr kinase/phosphatase (HprK/P) is a key regulatory enzyme controlling carbon metabolism in Gram- positive bacteria. It catalyses the ATP-dependent phosphorylation of Ser46 in HPr, a protein of the phosphotransferase system, and also its dephosphorylation. HprK/P is unrelated to eukaryotic protein kinases, but contains the Walker motif A characteristic of nucleotide-binding proteins. We report here the X-ray structure of an active fragment of Lactobacillus casei HprK/P at 2.8 A resolution, solved by the multiwavelength anomalous dispersion method on a seleniated protein (PDB code 1jb1). The protein is a hexamer, with each subunit containing an ATP-binding domain similar to nucleoside/nucleotide kinases, and a putative HPr-binding domain unrelated to the substrate-binding domains of other kinases. The Walker motif A forms a typical P-loop which binds inorganic phosphate in the crystal. We modelled ATP binding by comparison with adenylate kinase, and designed a tentative model of the complex with HPr based on a docking simulation. The results confirm that HprK/P represents a new family of protein kinases, first identified in bacteria, but which may also have members in eukaryotes.

Citing Articles

Structure-Based Virtual Screening, ADMET Properties Prediction and Molecular Dynamics Studies Reveal Potential Inhibitors of HPrK/P.

Li S, Zhou Y, Yan Y, Qin Y, Weng Q, Sun L Life (Basel). 2024; 14(6).

PMID: 38929642 PMC: 11204831. DOI: 10.3390/life14060657.


Biosensor-assisted CRISPRi high-throughput screening to identify genetic targets in for high d-lactate production.

Peng Q, Bao W, Geng B, Yang S Synth Syst Biotechnol. 2024; 9(2):242-249.

PMID: 38390372 PMC: 10883783. DOI: 10.1016/j.synbio.2024.02.002.


Identification of HPr kinase/phosphorylase inhibitors: novel antimicrobials against resistant Enterococcus faecalis.

Kumar S, Bhadane R, Shandilya S, Salo-Ahen O, Kapila S J Comput Aided Mol Des. 2022; 36(7):507-520.

PMID: 35809194 PMC: 9399212. DOI: 10.1007/s10822-022-00461-6.


Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome.

Rangwala A, Mingione V, Georghiou G, Seeliger M Biomolecules. 2022; 12(5).

PMID: 35625613 PMC: 9138534. DOI: 10.3390/biom12050685.


Proteomic Responses to Butanol Stress.

Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea C Front Microbiol. 2021; 12:674639.

PMID: 34367082 PMC: 8336468. DOI: 10.3389/fmicb.2021.674639.


References
1.
Terwilliger T, Berendzen J . Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 1999; 55(Pt 4):849-61. PMC: 2746121. DOI: 10.1107/s0907444999000839. View

2.
Esnouf R . Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr D Biol Crystallogr. 1999; 55(Pt 4):938-40. DOI: 10.1107/s0907444998017363. View

3.
Gouet P, Courcelle E, Stuart D, Metoz F . ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 1999; 15(4):305-8. DOI: 10.1093/bioinformatics/15.4.305. View

4.
Ilan O, Bloch Y, Frankel G, Ullrich H, Geider K, Rosenshine I . Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. EMBO J. 1999; 18(12):3241-8. PMC: 1171405. DOI: 10.1093/emboj/18.12.3241. View

5.
Neves A, Ramos A, Nunes M, Kleerebezem M, Hugenholtz J, de Vos W . In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng. 1999; 64(2):200-12. DOI: 10.1002/(sici)1097-0290(19990720)64:2<200::aid-bit9>3.0.co;2-k. View