Rotrattanadumrong R, Yokobayashi Y
Nat Commun. 2022; 13(1):4847.
PMID: 35977956
PMC: 9385714.
DOI: 10.1038/s41467-022-32538-z.
Zheng J, Guo N, Wagner A
Mol Biol Evol. 2021; 38(11):4792-4804.
PMID: 34255074
PMC: 8557407.
DOI: 10.1093/molbev/msab206.
Bravi B, Ravasio R, Brito C, Wyart M
PLoS Comput Biol. 2020; 16(3):e1007630.
PMID: 32119660
PMC: 7067494.
DOI: 10.1371/journal.pcbi.1007630.
Kemble H, Nghe P, Tenaillon O
Evol Appl. 2019; 12(9):1721-1742.
PMID: 31548853
PMC: 6752143.
DOI: 10.1111/eva.12846.
Taylor M, Wilczek A, Roe J, Welch S, Runcie D, Cooper M
Proc Natl Acad Sci U S A. 2019; 116(36):17890-17899.
PMID: 31420516
PMC: 6731683.
DOI: 10.1073/pnas.1902731116.
The distribution of epistasis on simple fitness landscapes.
Fraisse C, Welch J
Biol Lett. 2019; 15(4):20180881.
PMID: 31014191
PMC: 6501363.
DOI: 10.1098/rsbl.2018.0881.
Mutation and Epistasis in Influenza Virus Evolution.
Lyons D, Lauring A
Viruses. 2018; 10(8).
PMID: 30081492
PMC: 6115771.
DOI: 10.3390/v10080407.
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations.
Beleva Guthrie V, Masica D, Fraser A, Federico J, Fan Y, Camps M
Mol Biol Evol. 2018; 35(6):1507-1519.
PMID: 29522102
PMC: 5967520.
DOI: 10.1093/molbev/msy036.
Negative Epistasis in Experimental RNA Fitness Landscapes.
Bendixsen D, Ostman B, Hayden E
J Mol Evol. 2017; 85(5-6):159-168.
PMID: 29127445
DOI: 10.1007/s00239-017-9817-5.
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?.
du Plessis L, Leventhal G, Bonhoeffer S
Mol Biol Evol. 2016; 33(9):2454-68.
PMID: 27189564
PMC: 4989103.
DOI: 10.1093/molbev/msw097.
Survival of the Curviest: Noise-Driven Selection for Synergistic Epistasis.
Wilkins J, McHale P, Gervin J, Lander A
PLoS Genet. 2016; 12(4):e1006003.
PMID: 27123867
PMC: 4849581.
DOI: 10.1371/journal.pgen.1006003.
Epistasis and the Structure of Fitness Landscapes: Are Experimental Fitness Landscapes Compatible with Fisher's Geometric Model?.
Blanquart F, Bataillon T
Genetics. 2016; 203(2):847-62.
PMID: 27052568
PMC: 4896198.
DOI: 10.1534/genetics.115.182691.
The Utility of Fisher's Geometric Model in Evolutionary Genetics.
Tenaillon O
Annu Rev Ecol Evol Syst. 2016; 45:179-201.
PMID: 26740803
PMC: 4699269.
DOI: 10.1146/annurev-ecolsys-120213-091846.
Intramolecular phenotypic capacitance in a modular RNA molecule.
Hayden E, Bendixsen D, Wagner A
Proc Natl Acad Sci U S A. 2015; 112(40):12444-9.
PMID: 26401020
PMC: 4603511.
DOI: 10.1073/pnas.1420902112.
Estimating directional epistasis.
Le Rouzic A
Front Genet. 2014; 5:198.
PMID: 25071828
PMC: 4094929.
DOI: 10.3389/fgene.2014.00198.
Empirical fitness landscapes and the predictability of evolution.
de Visser J, Krug J
Nat Rev Genet. 2014; 15(7):480-90.
PMID: 24913663
DOI: 10.1038/nrg3744.
Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations.
Chou H, Delaney N, Draghi J, Marx C
PLoS Genet. 2014; 10(2):e1004149.
PMID: 24586190
PMC: 3937219.
DOI: 10.1371/journal.pgen.1004149.
Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis.
Borrell S, Teo Y, Giardina F, Streicher E, Klopper M, Feldmann J
Evol Med Public Health. 2014; 2013(1):65-74.
PMID: 24481187
PMC: 3868377.
DOI: 10.1093/emph/eot003.
The strength of genetic interactions scales weakly with mutational effects.
Velenich A, Gore J
Genome Biol. 2013; 14(7):R76.
PMID: 23889884
PMC: 4053755.
DOI: 10.1186/gb-2013-14-7-r76.
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
Schenk M, Szendro I, Salverda M, Krug J, de Visser J
Mol Biol Evol. 2013; 30(8):1779-87.
PMID: 23676768
PMC: 3708503.
DOI: 10.1093/molbev/mst096.