Westover K, Jin P, Yao B
Epigenomics. 2024; .
PMID: 38530068
PMC: 11160457.
DOI: 10.2217/epi-2023-0379.
Cardona N, Ocampo S, Estrada J, Mojica M, Porras G
Biomedica. 2022; 42(Sp. 1):89-99.
PMID: 35866733
PMC: 9410705.
DOI: 10.7705/biomedica.6178.
Jacquier V, Prevot M, Gostan T, Bordonne R, Benkhelifa-Ziyyat S, Barkats M
RNA. 2021; 28(3):303-319.
PMID: 34893560
PMC: 8848931.
DOI: 10.1261/rna.078329.120.
Choi K, Yang A, Baek J, Jeong H, Kang Y, Baek W
Int J Mol Sci. 2021; 22(19).
PMID: 34638572
PMC: 8508836.
DOI: 10.3390/ijms221910234.
Totzeck A, Stolte B, Kizina K, Bolz S, Schlag M, Thimm A
Int J Mol Sci. 2019; 20(21).
PMID: 31671515
PMC: 6862027.
DOI: 10.3390/ijms20215397.
A Semi-Mechanistic Population Pharmacokinetic Model of Nusinersen: An Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy.
Biliouris K, Gaitonde P, Yin W, Norris D, Wang Y, Henry S
CPT Pharmacometrics Syst Pharmacol. 2018; 7(9):581-592.
PMID: 30043511
PMC: 6157691.
DOI: 10.1002/psp4.12323.
Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy.
Govoni A, Gagliardi D, Comi G, Corti S
Mol Neurobiol. 2018; 55(8):6307-6318.
PMID: 29294245
DOI: 10.1007/s12035-017-0831-9.
Application of urine cells in drug intervention for spinal muscular atrophy.
Zhang Q, Lin X, Li J, Lu Y, Guo X, Dong E
Exp Ther Med. 2017; 14(3):1993-1998.
PMID: 28962115
PMC: 5609093.
DOI: 10.3892/etm.2017.4791.
SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Jangi M, Fleet C, Cullen P, Gupta S, Mekhoubad S, Chiao E
Proc Natl Acad Sci U S A. 2017; 114(12):E2347-E2356.
PMID: 28270613
PMC: 5373344.
DOI: 10.1073/pnas.1613181114.
RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.
Frese K, Meder B, Keller A, Just S, Haas J, Vogel B
J Cell Sci. 2015; 128(16):3030-40.
PMID: 26116573
PMC: 4541041.
DOI: 10.1242/jcs.166850.
Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update.
Brichta L, Greengard P
Front Neuroanat. 2015; 8:152.
PMID: 25565977
PMC: 4266033.
DOI: 10.3389/fnana.2014.00152.
Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy.
Thomson S, Nahon J, Mutsaers C, Thomson D, Hamilton G, Parson S
PLoS One. 2013; 7(12):e52605.
PMID: 23285108
PMC: 3527597.
DOI: 10.1371/journal.pone.0052605.
Targeting RNA to treat neuromuscular disease.
Muntoni F, Wood M
Nat Rev Drug Discov. 2011; 10(8):621-37.
PMID: 21804598
DOI: 10.1038/nrd3459.
Electrophysiological properties of motor neurons in a mouse model of severe spinal muscular atrophy: in vitro versus in vivo development.
Zhang H, Robinson N, Wu C, Wang W, Harrington M
PLoS One. 2010; 5(7):e11696.
PMID: 20657731
PMC: 2908141.
DOI: 10.1371/journal.pone.0011696.
The role of CELF proteins in neurological disorders.
Gallo J, Spickett C
RNA Biol. 2010; 7(4):474-9.
PMID: 20622515
PMC: 3062235.
DOI: 10.4161/rna.7.4.12345.
Repair of pre-mRNA splicing: prospects for a therapy for spinal muscular atrophy.
Nlend R, Meyer K, Schumperli D
RNA Biol. 2010; 7(4):430-40.
PMID: 20523126
PMC: 3070909.
DOI: 10.4161/rna.7.4.12206.
Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis.
Yong J, Kasim M, Bachorik J, Wan L, Dreyfuss G
Mol Cell. 2010; 38(4):551-62.
PMID: 20513430
PMC: 2901871.
DOI: 10.1016/j.molcel.2010.03.014.
A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity.
Cho S, Dreyfuss G
Genes Dev. 2010; 24(5):438-42.
PMID: 20194437
PMC: 2827839.
DOI: 10.1101/gad.1884910.
RNA and disease.
Cooper T, Wan L, Dreyfuss G
Cell. 2009; 136(4):777-93.
PMID: 19239895
PMC: 2866189.
DOI: 10.1016/j.cell.2009.02.011.
Inactivation of the SMN complex by oxidative stress.
Wan L, Ottinger E, Cho S, Dreyfuss G
Mol Cell. 2008; 31(2):244-54.
PMID: 18657506
PMC: 2867055.
DOI: 10.1016/j.molcel.2008.06.004.