» Articles » PMID: 11387219

Human Acrocentric Chromosomes with Transcriptionally Silent Nucleolar Organizer Regions Associate with Nucleoli

Overview
Journal EMBO J
Date 2001 Jun 2
PMID 11387219
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids. Human ribosomal genes are transcriptionally silent in this context. Combined immunofluorescence and in situ hybridization (immuno-FISH) on three-dimensional preserved nuclei showed that human acrocentric chromosomes associate with hybrid cell nucleoli. Analysis of purified nucleoli demonstrated that human and mouse NORs are equally likely to be within a hybrid cell nucleolus. This is supported further by the observation that murine upstream binding factor can associate with human NORs. Incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.

Citing Articles

RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli.

Chowdhury S, Shilpi A, Felsenfeld G Nucleus. 2025; 16(1):2468597.

PMID: 39987497 PMC: 11849958. DOI: 10.1080/19491034.2025.2468597.


LINE1 elements at distal junctions of rDNA repeats regulate nucleolar organization in human embryonic stem cells.

Ataei L, Zhang J, Monis S, Giemza K, Mittal K, Yang J Genes Dev. 2025; 39(3-4):280-298.

PMID: 39797762 PMC: 11795452. DOI: 10.1101/gad.351979.124.


Nucleolus and centromere Tyramide Signal Amplification-Seq reveals variable localization of heterochromatin in different cell types.

Kumar P, Gholamalamdari O, Zhang Y, Zhang L, Vertii A, van Schaik T Commun Biol. 2024; 7(1):1135.

PMID: 39271748 PMC: 11399238. DOI: 10.1038/s42003-024-06838-7.


Transient crosslinking controls the condensate formation pathway within chromatin networks.

Wu Z, Bloom K, Gregory Forest M, Cao X Phys Rev E. 2024; 109(4):L042401.

PMID: 38755828 PMC: 11137846. DOI: 10.1103/PhysRevE.109.L042401.


New Functional Motifs for the Targeted Localization of Proteins to the Nucleolus in and Human Cells.

Ogienko A, Korepina M, Pindyurin A, Omelina E Int J Mol Sci. 2024; 25(2).

PMID: 38279227 PMC: 10817092. DOI: 10.3390/ijms25021230.


References
1.
Pederson T . The plurifunctional nucleolus. Nucleic Acids Res. 1998; 26(17):3871-6. PMC: 147800. DOI: 10.1093/nar/26.17.3871. View

2.
Akhmanova A, Verkerk T, Langeveld A, Grosveld F, Galjart N . Characterisation of transcriptionally active and inactive chromatin domains in neurons. J Cell Sci. 2000; 113 Pt 24:4463-74. DOI: 10.1242/jcs.113.24.4463. View

3.
Sakai K, Ohta T, Minoshima S, Kudoh J, Wang Y, de Jong P . Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics. 1995; 26(3):521-6. DOI: 10.1016/0888-7543(95)80170-q. View

4.
LABHART P, Reeder R . Characterization of three sites of RNA 3' end formation in the Xenopus ribosomal gene spacer. Cell. 1986; 45(3):431-43. DOI: 10.1016/0092-8674(86)90329-6. View

5.
Manuelidis L, Borden J . Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988; 96(6):397-410. DOI: 10.1007/BF00303033. View