» Articles » PMID: 11333215

Repair of Topoisomerase-mediated DNA Damage in Bacteriophage T4

Overview
Journal Genetics
Specialty Genetics
Date 2001 May 3
PMID 11333215
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Type II topoisomerase inhibitors are used to treat both tumors and bacterial infections. These inhibitors stabilize covalent DNA-topoisomerase cleavage complexes that ultimately cause lethal DNA damage. A functional recombinational repair apparatus decreases sensitivity to these drugs, suggesting that topoisomerase-mediated DNA damage is amenable to such repair. Using a bacteriophage T4 model system, we have developed a novel in vivo plasmid-based assay that allows physical analysis of the repair products from one particular topoisomerase cleavage site. We show that the antitumor agent 4'-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA) stabilizes the T4 type II topoisomerase at the strong topoisomerase cleavage site on the plasmid, thereby stimulating recombinational repair. The resulting m-AMSA-dependent repair products do not form in the absence of functional topoisomerase and appear at lower drug concentrations with a drug-hypersensitive topoisomerase mutant. The appearance of repair products requires that the plasmid contain a T4 origin of replication. Finally, genetic analyses demonstrate that repair product formation is absolutely dependent on genes 32 and 46, largely dependent on genes uvsX and uvsY, and only partly dependent on gene 49. Very similar genetic requirements are observed for repair of endonuclease-generated double-strand breaks, suggesting mechanistic similarity between the two repair pathways.

Citing Articles

Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease.

Perry M, Ghosal G Front Mol Biosci. 2022; 9:916697.

PMID: 35782873 PMC: 9240642. DOI: 10.3389/fmolb.2022.916697.


Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC).

Sun Y, Saha S, Wang W, Saha L, Huang S, Pommier Y DNA Repair (Amst). 2020; 89:102837.

PMID: 32200233 PMC: 7188568. DOI: 10.1016/j.dnarep.2020.102837.


DNA-protein cross-link repair: what do we know now?.

Zhang H, Xiong Y, Chen J Cell Biosci. 2020; 10:3.

PMID: 31921408 PMC: 6945406. DOI: 10.1186/s13578-019-0366-z.


DNA- and DNA-Protein-Crosslink Repair in Plants.

Enderle J, Dorn A, Puchta H Int J Mol Sci. 2019; 20(17).

PMID: 31484324 PMC: 6747210. DOI: 10.3390/ijms20174304.


Mechanisms of DNA-protein crosslink repair.

Stingele J, Bellelli R, Boulton S Nat Rev Mol Cell Biol. 2017; 18(9):563-573.

PMID: 28655905 DOI: 10.1038/nrm.2017.56.


References
1.
Huang Y, Parker M, Belfort M . Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics. 1999; 153(4):1501-12. PMC: 1460841. DOI: 10.1093/genetics/153.4.1501. View

2.
Nikaido H . Multidrug efflux pumps of gram-negative bacteria. J Bacteriol. 1996; 178(20):5853-9. PMC: 178438. DOI: 10.1128/jb.178.20.5853-5859.1996. View

3.
Kreuzer K . Recombination-dependent DNA replication in phage T4. Trends Biochem Sci. 2000; 25(4):165-73. DOI: 10.1016/s0968-0004(00)01559-0. View

4.
Flores-Rozas H, Kolodner R . Links between replication, recombination and genome instability in eukaryotes. Trends Biochem Sci. 2000; 25(4):196-200. PMC: 3635104. DOI: 10.1016/s0968-0004(00)01568-1. View

5.
Low B . Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc Natl Acad Sci U S A. 1968; 60(1):160-7. PMC: 539096. DOI: 10.1073/pnas.60.1.160. View