» Articles » PMID: 11331606

Subcellular Localization of the Snf1 Kinase is Regulated by Specific Beta Subunits and a Novel Glucose Signaling Mechanism

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2001 May 2
PMID 11331606
Citations 130
Authors
Affiliations
Soon will be listed here.
Abstract

The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the alpha (catalytic) subunit Snf1, one of the three related beta subunits Gal83, Sip1, or Sip2, and the gamma subunit Snf4. We present evidence that the beta subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different beta subunits, affords versatility in regulating physiological responses.

Citing Articles

Ca2+-triggered Atg11-Bmh1/2-Snf1 complex assembly initiates autophagy upon glucose starvation.

Yao W, Chen Y, Zhang Y, Zhong S, Ye M, Chen Y J Cell Biol. 2024; 223(9.

PMID: 38980288 PMC: 11232891. DOI: 10.1083/jcb.202310049.


plays a crucial role in the utilization of -alkane and transcriptional regulation of the genes involved in it in the yeast .

Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R Heliyon. 2024; 10(12):e32886.

PMID: 38975102 PMC: 11226914. DOI: 10.1016/j.heliyon.2024.e32886.


Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches.

Braam S, Tripodi F, Osterberg L, Persson S, Welkenhuysen N, Coccetti P Microb Cell. 2024; 11:143-154.

PMID: 38756204 PMC: 11097897. DOI: 10.15698/mic2024.05.822.


AMPK role in epilepsy: a promising therapeutic target?.

Qi Y, Zhang Y, Gao Y, Chen W, Zhou T, Chang L J Neurol. 2023; 271(2):748-771.

PMID: 38010498 DOI: 10.1007/s00415-023-12062-w.


Nutrient-dependent signaling pathways that control autophagy in yeast.

Metur S, Klionsky D FEBS Lett. 2023; 598(1):32-47.

PMID: 37758520 PMC: 10841420. DOI: 10.1002/1873-3468.14741.


References
1.
Lesage P, Yang X, Carlson M . Yeast SNF1 protein kinase interacts with SIP4, a C6 zinc cluster transcriptional activator: a new role for SNF1 in the glucose response. Mol Cell Biol. 1996; 16(5):1921-8. PMC: 231179. DOI: 10.1128/MCB.16.5.1921. View

2.
Sanz P, Alms G, Haystead T, Carlson M . Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol. 2000; 20(4):1321-8. PMC: 85274. DOI: 10.1128/MCB.20.4.1321-1328.2000. View

3.
Yin Z, Smith R, Brown A . Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol. 1996; 20(4):751-64. DOI: 10.1111/j.1365-2958.1996.tb02514.x. View

4.
Wach A . PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996; 12(3):259-65. DOI: 10.1002/(SICI)1097-0061(19960315)12:3%3C259::AID-YEA901%3E3.0.CO;2-C. View

5.
de Winde J, Crauwels M, Hohmann S, Thevelein J, Winderickx J . Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem. 1996; 241(2):633-43. DOI: 10.1111/j.1432-1033.1996.00633.x. View