» Articles » PMID: 11222762

Comparative Mutational Analysis of Cis-acting RNA Signals for Translational Frameshifting in HIV-1 and HTLV-2

Overview
Specialty Biochemistry
Date 2001 Feb 27
PMID 11222762
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for -1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem-loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gag-pol and HTLV-2 gag-pro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem-loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.

Citing Articles

Abracadabra, One Becomes Two: The Importance of Context in Viral -1 Programmed Ribosomal Frameshifting.

Penn W, Mukhopadhyay S mBio. 2022; 13(4):e0246821.

PMID: 35735745 PMC: 9426525. DOI: 10.1128/mbio.02468-21.


Premature translation termination mediated non-ER stress induced ATF6 activation by a ligand-dependent ribosomal frameshifting circuit.

Hsu H, Murata A, Dohno C, Nakatani K, Chang K Nucleic Acids Res. 2022; 50(9):5369-5383.

PMID: 35511080 PMC: 9122530. DOI: 10.1093/nar/gkac257.


From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion.

Atkins J, OConnor K, Bhatt P, Loughran G Viruses. 2021; 13(7).

PMID: 34199077 PMC: 8310308. DOI: 10.3390/v13071251.


V, 2.Ribosomal frameshifting in astroviruses.

Brierley I, Vidakovic M Perspect Med Virol. 2020; 9:587-606.

PMID: 32287603 PMC: 7133818. DOI: 10.1016/S0168-7069(03)09035-9.


An RNA pseudoknot stimulates HTLV-1 programmed -1 ribosomal frameshifting.

Thulson E, Hartwick E, Cooper-Sansone A, Williams M, Soliman M, Robinson L RNA. 2020; 26(4):512-528.

PMID: 31980578 PMC: 7075266. DOI: 10.1261/rna.070490.119.


References
1.
Kim Y, Su L, Maas S, ONeill A, Rich A . Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. Proc Natl Acad Sci U S A. 1999; 96(25):14234-9. PMC: 24420. DOI: 10.1073/pnas.96.25.14234. View

2.
Karacostas V, Wolffe E, Nagashima K, Gonda M, Moss B . Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology. 1993; 193(2):661-71. DOI: 10.1006/viro.1993.1174. View

3.
Farabaugh P . Translational frameshifting: implications for the mechanism of translational frame maintenance. Prog Nucleic Acid Res Mol Biol. 2000; 64:131-70. DOI: 10.1016/s0079-6603(00)64004-7. View

4.
Lucchesi J, Makelainen K, Merits A, Tamm T, Makinen K . Regulation of -1 ribosomal frameshifting directed by cocksfoot mottle sobemovirus genome. Eur J Biochem. 2000; 267(12):3523-9. DOI: 10.1046/j.1432-1327.2000.01379.x. View

5.
Ban N, Nissen P, Hansen J, Moore P, Steitz T . The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000; 289(5481):905-20. DOI: 10.1126/science.289.5481.905. View