» Articles » PMID: 11023880

Atomic Detail Peptide-membrane Interactions: Molecular Dynamics Simulation of Gramicidin S in a DMPC Bilayer

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2000 Oct 12
PMID 11023880
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular dynamics simulations have been performed of the sequence-symmetric cyclic decapeptide antibiotic gramicidin S (GS), in interaction with a hydrated dimyristoylphosphatidylcholine (DMPC) bilayer, and the results compared with a "control" simulation of the system in the absence of GS. Following experimental evidence, the GS was initially set in a single antiparallel beta-sheet conformation with two Type II' beta-turns in an amphiphilic interaction with the membrane. This conformation and position remained in the 6.5 ns simulation. Main-chain dihedrals are on average approximately 26 degrees from those determined by NMR experiment on GS in dimethylsulfoxide (DMSO) solution. Sequence-symmetric main-chain and side-chain dihedral angle pairs converge to within approximately 5 degrees and approximately 10 degrees, respectively. The area per lipid, lipid tail order parameters, and quadrupole spin-lattice relaxation times of the control simulation are mostly in good agreement with corresponding experiments. The GS has little effect on the membrane dipole potential or water permeability. However, it is found to have a disordering effect (in agreement with experiment) and a fluidifying effect on lipids directly interacting with it, and an ordering effect on those not directly interacting.

Citing Articles

An Electrospray Ionization Mass Spectrometry Study on the "In Vacuo" Hetero-Oligomers Formed by the Antimicrobial Peptides, Surfactin and Gramicidin S.

Rautenbach M, Vlok N, Eyeghe-Bickong H, van der Merwe M, Stander M J Am Soc Mass Spectrom. 2017; 28(8):1623-1637.

PMID: 28560564 DOI: 10.1007/s13361-017-1685-0.


Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis.

Berditsch M, Afonin S, Steineker A, Orel N, Jakovkin I, Weber C Appl Environ Microbiol. 2015; 81(11):3593-603.

PMID: 25795666 PMC: 4421037. DOI: 10.1128/AEM.00229-15.


The high resolution structure of tyrocidine A reveals an amphipathic dimer.

Loll P, Upton E, Nahoum V, Economou N, Cocklin S Biochim Biophys Acta. 2014; 1838(5):1199-207.

PMID: 24530898 PMC: 3980540. DOI: 10.1016/j.bbamem.2014.01.033.


The molecular basis of ceramide-1-phosphate recognition by C2 domains.

Ward K, Bhardwaj N, Vora M, Chalfant C, Lu H, Stahelin R J Lipid Res. 2013; 54(3):636-648.

PMID: 23277511 PMC: 3617939. DOI: 10.1194/jlr.M031088.


The molecular basis for antimicrobial activity of pore-forming cyclic peptides.

Cirac A, Moiset G, Mika J, Kocer A, Salvador P, Poolman B Biophys J. 2011; 100(10):2422-31.

PMID: 21575576 PMC: 3093570. DOI: 10.1016/j.bpj.2011.03.057.


References
1.
Bechinger B . The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999; 1462(1-2):157-83. DOI: 10.1016/s0005-2736(99)00205-9. View

2.
Cseh R, Benz R . Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J. 1999; 77(3):1477-88. PMC: 1300435. DOI: 10.1016/S0006-3495(99)76995-X. View

3.
Stern A, Gibbons W, CRAIG L . A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1968; 61(2):734-41. PMC: 225221. DOI: 10.1073/pnas.61.2.734. View

4.
Hubbell W, McConnell H . Spin-label studies of the excitable membranes of nerve and muscle. Proc Natl Acad Sci U S A. 1968; 61(1):12-6. PMC: 285897. DOI: 10.1073/pnas.61.1.12. View

5.
Lee B, Richards F . The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971; 55(3):379-400. DOI: 10.1016/0022-2836(71)90324-x. View