» Articles » PMID: 11008950

Monte Carlo Verification of IMRT Dose Distributions from a Commercial Treatment Planning Optimization System

Overview
Journal Phys Med Biol
Publisher IOP Publishing
Date 2000 Sep 29
PMID 11008950
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The purpose of this work was to use Monte Carlo simulations to verify the accuracy of the dose distributions from a commercial treatment planning optimization system (Corvus, Nomos Corp., Sewickley, PA) for intensity-modulated radiotherapy (IMRT). A Monte Carlo treatment planning system has been implemented clinically to improve and verify the accuracy of radiotherapy dose calculations. Further modifications to the system were made to compute the dose in a patient for multiple fixed-gantry IMRT fields. The dose distributions in the experimental phantoms and in the patients were calculated and used to verify the optimized treatment plans generated by the Corvus system. The Monte Carlo calculated IMRT dose distributions agreed with the measurements to within 2% of the maximum dose for all the beam energies and field sizes for both the homogeneous and heterogeneous phantoms. The dose distributions predicted by the Corvus system, which employs a finite-size pencil beam (FSPB) algorithm, agreed with the Monte Carlo simulations and measurements to within 4% in a cylindrical water phantom with various hypothetical target shapes. Discrepancies of more than 5% (relative to the prescribed target dose) in the target region and over 20% in the critical structures were found in some IMRT patient calculations. The FSPB algorithm as implemented in the Corvus system is adequate for homogeneous phantoms (such as prostate) but may result in significant under or over-estimation of the dose in some cases involving heterogeneities such as the air-tissue, lung-tissue and tissue-bone interfaces.

Citing Articles

Pre-therapy PET-based voxel-wise dosimetry prediction by characterizing intra-organ heterogeneity in PSMA-directed radiopharmaceutical theranostics.

Xue S, Gafita A, Zhao Y, Mercolli L, Cheng F, Rauscher I Eur J Nucl Med Mol Imaging. 2024; 51(11):3450-3460.

PMID: 38724653 PMC: 11368979. DOI: 10.1007/s00259-024-06737-3.


Commissioning and clinical implementation of the first commercial independent Monte Carlo 3D dose calculation to replace CyberKnife M6™ patient-specific QA measurements.

Milder M, Alber M, Sohn M, Hoogeman M J Appl Clin Med Phys. 2020; 21(11):304-311.

PMID: 33103343 PMC: 7700940. DOI: 10.1002/acm2.13046.


Study of efficiency in five-field and field-by-field intensity modulated radiation therapy (IMRT) plan using DOSXYZnrc Monte Carlo code.

Yani S, Budiansah I, Kamirul , Rhani M, Haryanto F Rep Pract Oncol Radiother. 2020; 25(3):428-435.

PMID: 32372883 PMC: 7191211. DOI: 10.1016/j.rpor.2020.03.022.


Validation of PRIMO Monte Carlo Model of ClinaciX 6MV Photon Beam.

Sarin B, Bindhu B, Saju B, Nair R J Med Phys. 2020; 45(1):24-35.

PMID: 32355432 PMC: 7185709. DOI: 10.4103/jmp.JMP_75_19.


EGSnrc application for IMRT planning.

Yani S, Rizkia I, Kamirul , Rhani M, Haekal M, Haryanto F Rep Pract Oncol Radiother. 2020; 25(2):217-226.

PMID: 32194347 PMC: 7078526. DOI: 10.1016/j.rpor.2020.01.004.