» Articles » PMID: 10953028

Gastrin is a Target of the Beta-catenin/TCF-4 Growth-signaling Pathway in a Model of Intestinal Polyposis

Overview
Journal J Clin Invest
Specialty General Medicine
Date 2000 Aug 23
PMID 10953028
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene occur in most colorectal cancers and lead to activation of beta-catenin. Whereas several downstream targets of beta-catenin have been identified (c-myc, cyclin D1, PPARdelta), the precise functional significance of many of these targets has not been examined directly using genetic approaches. Previous studies have shown that the gene encoding the hormone gastrin is activated during colon cancer progression and the less-processed forms of gastrin are important colonic trophic factors. We show here that the gastrin gene is a downstream target of the beta-catenin/TCF-4 signaling pathway and that cotransfection of a constitutively active beta-catenin expression construct causes a threefold increase in gastrin promoter activity. APC(min-/+) mice overexpressing one of the alternatively processed forms of gastrin, glycine-extended gastrin, show a significant increase in polyp number. Gastrin-deficient APC(min-/+) mice, conversely, showed a marked decrease in polyp number and a significantly decreased polyp proliferation rate. Activation of gastrin by beta-catenin may therefore represent an early event in colorectal tumorigenesis and may contribute significantly toward neoplastic progression. The identification of gastrin as a functionally relevant downstream target of the beta-catenin signaling pathway provides a new target for therapeutic modalities in the treatment of colorectal cancer.

Citing Articles

Progastrin: An Overview of Its Crucial Role in the Tumorigenesis of Gastrointestinal Cancers.

Fioretzaki R, Sarantis P, Charalampakis N, Christofidis K, Mylonakis A, Koustas E Biomedicines. 2024; 12(4).

PMID: 38672239 PMC: 11047876. DOI: 10.3390/biomedicines12040885.


Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation.

Poplaski V, Bomidi C, Kambal A, Nguyen-Phuc H, Di Rienzi S, Danhof H J Clin Invest. 2023; 133(21).

PMID: 37909332 PMC: 10617781. DOI: 10.1172/JCI166884.


A combined bioinformatics and experimental approach identifies RMI2 as a Wnt/β-catenin signaling target gene related to hepatocellular carcinoma.

Tsai H, Cheng S, Chen C, Chen I, Ho C BMC Cancer. 2023; 23(1):1025.

PMID: 37875822 PMC: 10594864. DOI: 10.1186/s12885-023-10655-2.


Association between post-operative hPG (circulating progastrin) detectable level and worse prognosis in glioblastoma.

Doucet L, Cailleteau A, Vaugier L, Gourmelon C, Bureau M, Salaud C ESMO Open. 2023; 8(5):101626.

PMID: 37713930 PMC: 10594012. DOI: 10.1016/j.esmoop.2023.101626.


Effect of DNA aptamer through blocking of negative regulation of Wnt/β-catenin signaling in human hair follicle dermal papilla cells.

Won A, Choi S, Kim A, Hong J Skin Res Technol. 2023; 29(5):e13326.

PMID: 37231925 PMC: 10182398. DOI: 10.1111/srt.13326.


References
1.
Smith K, Johnson K, Bryan T, Hill D, Markowitz S, WILLSON J . The APC gene product in normal and tumor cells. Proc Natl Acad Sci U S A. 1993; 90(7):2846-50. PMC: 46193. DOI: 10.1073/pnas.90.7.2846. View

2.
van Solinge W, Nielsen F, Friis-Hansen L, Falkmer U, Rehfeld J . Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology. 1993; 104(4):1099-107. DOI: 10.1016/0016-5085(93)90279-l. View

3.
Seva C, Dickinson C, Yamada T . Growth-promoting effects of glycine-extended progastrin. Science. 1994; 265(5170):410-2. DOI: 10.1126/science.8023165. View

4.
Luongo C, Moser A, Gledhill S, Dove W . Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994; 54(22):5947-52. View

5.
Baldwin G . Binding of progastrin fragments to the 78 kDa gastrin-binding protein. FEBS Lett. 1995; 359(1):97-100. DOI: 10.1016/0014-5793(95)00017-4. View