» Articles » PMID: 10841537

Crystal Structure of RPB5, a Universal Eukaryotic RNA Polymerase Subunit and Transcription Factor Interaction Target

Overview
Specialty Science
Date 2000 Jun 7
PMID 10841537
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Eukaryotic nuclei contain three different types of RNA polymerases (RNAPs), each consisting of 12-18 different subunits. The evolutionarily highly conserved RNAP subunit RPB5 is shared by all three enzymes and therefore represents a key structural/functional component of all eukaryotic RNAPs. Here we present the crystal structure of the RPB5 subunit from Saccharomyces cerevisiae. The bipartite structure includes a eukaryote-specific N-terminal domain and a C-terminal domain resembling the archaeal RNAP subunit H. RPB5 has been implicated in direct protein-protein contacts with transcription factor IIB, one of the components of the RNAP(II) basal transcriptional machinery, and gene-specific activator proteins, such as the hepatitis B virus transactivator protein X. The experimentally mapped regions of RPB5 involved in these interactions correspond to distinct and surface-exposed alpha-helical structures.

Citing Articles

The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation.

Hsu C, Buehler M, Tarakanova A Sci Rep. 2020; 10(1):2068.

PMID: 32034199 PMC: 7005769. DOI: 10.1038/s41598-020-58868-w.


Rpb5, a subunit shared by eukaryotic RNA polymerases, cooperates with prefoldin-like Bud27/URI.

Martinez-Fernandez V, Navarro F AIMS Genet. 2019; 5(1):63-74.

PMID: 31435513 PMC: 6690254. DOI: 10.3934/genet.2018.1.74.


Cloning, soluble expression, and purification of the RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae.

Chhetri G, Ghosh A, Chinta R, Akhtar S, Tripathi T Bioengineered. 2015; 6(1):62-6.

PMID: 25551420 PMC: 4601343. DOI: 10.1080/21655979.2014.1002301.


Activation of a chimeric Rpb5/RpoH subunit using library selection.

Sommer B, Waege I, Pollmann D, Seitz T, Thomm M, Sterner R PLoS One. 2014; 9(1):e87485.

PMID: 24489922 PMC: 3906176. DOI: 10.1371/journal.pone.0087485.


Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily.

Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K Nucleic Acids Res. 2012; 40(15):7016-45.

PMID: 22638584 PMC: 3424549. DOI: 10.1093/nar/gks382.


References
1.
Zaychikov E, Martin E, Denissova L, Kozlov M, Markovtsov V, Kashlev M . Mapping of catalytic residues in the RNA polymerase active center. Science. 1996; 273(5271):107-9. DOI: 10.1126/science.273.5271.107. View

2.
Fu J, Gnatt A, Bushnell D, Jensen G, Thompson N, Burgess R . Yeast RNA polymerase II at 5 A resolution. Cell. 1999; 98(6):799-810. DOI: 10.1016/s0092-8674(00)81514-7. View

3.
Thiru A, Hodach M, Eloranta J, Kostourou V, Weinzierl R, Matthews S . RNA polymerase subunit H features a beta-ribbon motif within a novel fold that is present in archaea and eukaryotes. J Mol Biol. 1999; 287(4):753-60. DOI: 10.1006/jmbi.1999.2638. View

4.
Kolodziej P, Woychik N, Liao S, Young R . RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol Cell Biol. 1990; 10(5):1915-20. PMC: 360537. DOI: 10.1128/mcb.10.5.1915-1920.1990. View

5.
Nicholls A, Sharp K, Honig B . Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991; 11(4):281-96. DOI: 10.1002/prot.340110407. View