» Articles » PMID: 10777556

Purification, Cloning, Expression, and Mechanism of Action of a Novel Platelet Aggregation Inhibitor from the Salivary Gland of the Blood-sucking Bug, Rhodnius Prolixus

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2000 Apr 25
PMID 10777556
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.

Citing Articles

Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Highlights New Potential Targets for Vector Control Strategy.

Ouali R, Vieira L, Salmon D, Bousbata S Microorganisms. 2021; 9(4).

PMID: 33920371 PMC: 8069306. DOI: 10.3390/microorganisms9040804.


Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate.

Martins Lima A, Saint Auguste D, Cuenot F, Martins Cavaco A, Lachkar T, Khawand C Int J Mol Sci. 2020; 21(18).

PMID: 32906775 PMC: 7554887. DOI: 10.3390/ijms21186539.


Salivary proteins electrophoretic patterns enabled differentiating Colombian Rhodnius Trans-Andean and Cis-Andean groups.

Meneses A, Rodriguez C, Suarez Y, Carranza J, Vallejo G Biomedica. 2020; 40(2):404-411.

PMID: 32673466 PMC: 7505504. DOI: 10.7705/biomedica.4992.


ADP binding by the Culex quinquefasciatus mosquito D7 salivary protein enhances blood feeding on mammals.

Martin-Martin I, Paige A, Valenzuela Leon P, Gittis A, Kern O, Bonilla B Nat Commun. 2020; 11(1):2911.

PMID: 32518308 PMC: 7283271. DOI: 10.1038/s41467-020-16665-z.


Transcriptomics and differential gene expression in (Annelida: Clitellata: Hirudinida: Hirudinidae): Contrasting feeding and fasting modes.

Khan M, Guan D, Kvist S, Ma L, Xie J, Xu S Ecol Evol. 2019; 9(8):4706-4719.

PMID: 31031937 PMC: 6476756. DOI: 10.1002/ece3.5074.