» Articles » PMID: 10770761

Identification and Expression of Genes Involved in Biosynthesis of L-oleandrose and Its Intermediate L-olivose in the Oleandomycin Producer Streptomyces Antibioticus

Overview
Specialty Pharmacology
Date 2000 Apr 19
PMID 10770761
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

A 9.8-kb DNA region from the oleandomycin gene cluster in Streptomyces antibioticus was cloned. Sequence analysis revealed the presence of 8 open reading frames encoding different enzyme activities involved in the biosynthesis of one of the two 2, 6-deoxysugars attached to the oleandomycin aglycone: L-oleandrose (the oleW, oleV, oleL, and oleU genes) and D-desosamine (the oleNI and oleT genes), or of both (the oleS and oleE genes). A Streptomyces albus strain harboring the oleG2 glycosyltransferase gene integrated into the chromosome was constructed. This strain was transformed with two different plasmid constructs (pOLV and pOLE) containing a set of genes proposed to be required for the biosynthesis of dTDP-L-olivose and dTDP-L-oleandrose, respectively. Incubation of these recombinant strains with the erythromycin aglycon (erythronolide B) gave rise to two new glycosylated compounds, identified as L-3-O-olivosyl- and L-3-O-oleandrosyl-erythronolide B, indicating that pOLV and pOLE encode all enzyme activities required for the biosynthesis of these two 2,6-dideoxysugars. A pathway is proposed for the biosynthesis of these two deoxysugars in S. antibioticus.

Citing Articles

Engineering BioBricks for Deoxysugar Biosynthesis and Generation of New Tetracenomycins.

Tirkkonen H, Brown K, Niemczura M, Faudemer Z, Brown C, Ponomareva L ACS Omega. 2023; 8(23):21237-21253.

PMID: 37332790 PMC: 10269268. DOI: 10.1021/acsomega.3c02460.


Dactylosporolides: Glycosylated Macrolides from .

Caradec T, Trivelli X, Desmecht E, Peucelle V, Khalife J, Hartkoorn R J Nat Prod. 2022; 85(12):2714-2722.

PMID: 36512509 PMC: 9791991. DOI: 10.1021/acs.jnatprod.2c00484.


De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity.

Marin L, Gutierrez-Del-Rio I, Villar C, Lombo F Microb Biotechnol. 2021; 14(5):2009-2024.

PMID: 34216097 PMC: 8449655. DOI: 10.1111/1751-7915.13874.


Crossroads of Antibiotic Resistance and Biosynthesis.

Wencewicz T J Mol Biol. 2019; 431(18):3370-3399.

PMID: 31288031 PMC: 6724535. DOI: 10.1016/j.jmb.2019.06.033.


De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor.

Marin L, Gutierrez-Del-Rio I, Entrialgo-Cadierno R, Villar C, Lombo F PLoS One. 2018; 13(11):e0207278.

PMID: 30440014 PMC: 6237366. DOI: 10.1371/journal.pone.0207278.


References
1.
Otten S, Liu X, Ferguson J, Hutchinson C . Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol. 1995; 177(22):6688-92. PMC: 177529. DOI: 10.1128/jb.177.22.6688-6692.1995. View

2.
Cundliffe E . Analysis of five tylosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome. Mol Microbiol. 1994; 13(2):349-55. DOI: 10.1111/j.1365-2958.1994.tb00428.x. View

3.
Quiros L, Hernandez C, Salas J . Purification and characterization of an extracellular enzyme from Streptomyces antibioticus that converts inactive glycosylated oleandomycin into the active antibiotic. Eur J Biochem. 1994; 222(1):129-35. DOI: 10.1111/j.1432-1033.1994.tb18850.x. View

4.
Liu H, Thorson J . Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol. 1994; 48:223-56. DOI: 10.1146/annurev.mi.48.100194.001255. View

5.
Otten S, Hutchinson C . Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol. 1992; 174(1):144-54. PMC: 205688. DOI: 10.1128/jb.174.1.144-154.1992. View