Laforet V, Schafer D
Ann N Y Acad Sci. 2024; 1533(1):38-50.
PMID: 38294960
PMC: 10976428.
DOI: 10.1111/nyas.15105.
Erofeeva N, Meshalkina D, Firsov M
Cells. 2023; 12(8).
PMID: 37190066
PMC: 10136742.
DOI: 10.3390/cells12081157.
Tarchick M, Clute D, Renna J
Sci Rep. 2023; 13(1):2834.
PMID: 36808155
PMC: 9938278.
DOI: 10.1038/s41598-023-29572-2.
Chen C, Wo R, Huang C, Cheng T, Lu J, Wang C
Vis Neurosci. 2022; 39:E003.
PMID: 35543445
PMC: 9107963.
DOI: 10.1017/S0952523822000013.
Meadows M, Balakrishnan V, Wang X, von Gersdorff H
J Neurosci. 2021; 41(46):9503-9520.
PMID: 34620721
PMC: 8612479.
DOI: 10.1523/JNEUROSCI.0670-21.2021.
Retinal Axon Interplay for Binocular Mapping.
Fassier C, Nicol X
Front Neural Circuits. 2021; 15:679440.
PMID: 34149367
PMC: 8213063.
DOI: 10.3389/fncir.2021.679440.
Spontaneous Afferent Activity Carves Olfactory Circuits.
Redolfi N, Lodovichi C
Front Cell Neurosci. 2021; 15:637536.
PMID: 33767612
PMC: 7985084.
DOI: 10.3389/fncel.2021.637536.
Visual Cortex Gains Independence from Peripheral Drive before Eye Opening.
Gribizis A, Ge X, Daigle T, Ackman J, Zeng H, Lee D
Neuron. 2019; 104(4):711-723.e3.
PMID: 31561919
PMC: 6872942.
DOI: 10.1016/j.neuron.2019.08.015.
Adenosine receptor expression in the adult zebrafish retina.
Grillo S, McDevitt D, Voas M, Khan A, Grillo M, Stella Jr S
Purinergic Signal. 2019; 15(3):327-342.
PMID: 31273575
PMC: 6737168.
DOI: 10.1007/s11302-019-09667-0.
Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation.
Weiner G, Shah S, Angelopoulos C, Bartakova A, Pulido R, Murphy A
Nat Commun. 2019; 10(1):2477.
PMID: 31171770
PMC: 6554348.
DOI: 10.1038/s41467-019-10219-8.
Purinergic signaling in the retina: From development to disease.
Ventura A, Dos Santos-Rodrigues A, Mitchell C, Faillace M
Brain Res Bull. 2018; 151:92-108.
PMID: 30458250
PMC: 6525091.
DOI: 10.1016/j.brainresbull.2018.10.016.
Mechanisms of Spontaneous Electrical Activity in the Developing Cerebral Cortex-Mouse Subplate Zone.
Singh M, White J, McKimm E, Milosevic M, Antic S
Cereb Cortex. 2018; 29(8):3363-3379.
PMID: 30169554
PMC: 7963116.
DOI: 10.1093/cercor/bhy205.
A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice.
Chew K, Renna J, McNeill D, Fernandez D, Keenan W, Thomsen M
Elife. 2017; 6.
PMID: 28617242
PMC: 5513697.
DOI: 10.7554/eLife.22861.
Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry.
Arroyo D, Feller M
Front Neural Circuits. 2016; 10:54.
PMID: 27507937
PMC: 4960261.
DOI: 10.3389/fncir.2016.00054.
Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.
Dong J, Gao L, Han J, Zhang J, Zheng J
Mol Neurobiol. 2016; 54(5):3407-3417.
PMID: 27177547
DOI: 10.1007/s12035-016-9914-2.
A reaction-diffusion model of cholinergic retinal waves.
Lansdell B, Ford K, Kutz J
PLoS Comput Biol. 2014; 10(12):e1003953.
PMID: 25474327
PMC: 4256014.
DOI: 10.1371/journal.pcbi.1003953.
Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors.
Burbridge T, Xu H, Ackman J, Ge X, Zhang Y, Ye M
Neuron. 2014; 84(5):1049-64.
PMID: 25466916
PMC: 4258148.
DOI: 10.1016/j.neuron.2014.10.051.
Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits.
Averaimo S, Nicol X
Front Cell Neurosci. 2014; 8:376.
PMID: 25431549
PMC: 4230202.
DOI: 10.3389/fncel.2014.00376.
Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
Speer C, Sun C, Liets L, Stafford B, Chapman B, Cheng H
Neural Dev. 2014; 9:25.
PMID: 25377639
PMC: 4289266.
DOI: 10.1186/1749-8104-9-25.
Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.
Huang P, Hsiao Y, Kao S, Chen C, Chen Y, Chiang C
PLoS One. 2014; 9(4):e95090.
PMID: 24777042
PMC: 4002430.
DOI: 10.1371/journal.pone.0095090.