» Articles » PMID: 33767612

Spontaneous Afferent Activity Carves Olfactory Circuits

Overview
Specialty Cell Biology
Date 2021 Mar 26
PMID 33767612
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.

Citing Articles

Early development of olfactory circuit function.

Maier J, Zhang Z Front Cell Neurosci. 2023; 17:1225186.

PMID: 37565031 PMC: 10410114. DOI: 10.3389/fncel.2023.1225186.


The frontal sharp transient in newborns: An endogenous neurobiomarker concomitant to the physiological and critical transitional period around delivery?.

Routier L, Mahmoudzadeh M, Panzani M, Saadatmehr B, Gondry J, Bourel-Ponchel E Cereb Cortex. 2022; 33(7):4026-4039.

PMID: 36066405 PMC: 10068298. DOI: 10.1093/cercor/bhac324.


SARS-CoV-2 Brain Regional Detection, Histopathology, Gene Expression, and Immunomodulatory Changes in Decedents with COVID-19.

Serrano G, Walker J, Tremblay C, Piras I, Huentelman M, Belden C J Neuropathol Exp Neurol. 2022; 81(9):666-695.

PMID: 35818336 PMC: 9278252. DOI: 10.1093/jnen/nlac056.


Developing and maintaining a nose-to-brain map of odorant identity.

Dorrego-Rivas A, Grubb M Open Biol. 2022; 12(6):220053.

PMID: 35765817 PMC: 9240688. DOI: 10.1098/rsob.220053.


Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development.

Pumo G, Kitazawa T, Rijli F Front Neural Circuits. 2022; 16:911023.

PMID: 35664458 PMC: 9158562. DOI: 10.3389/fncir.2022.911023.


References
1.
Turrigiano G . The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1715). PMC: 5247594. DOI: 10.1098/rstb.2016.0258. View

2.
Muller N, Sonntag M, Maraslioglu A, Hirtz J, Friauf E . Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity. J Physiol. 2019; 597(22):5469-5493. DOI: 10.1113/JP277757. View

3.
Colonnese M, Khazipov R . "Slow activity transients" in infant rat visual cortex: a spreading synchronous oscillation patterned by retinal waves. J Neurosci. 2010; 30(12):4325-37. PMC: 3467103. DOI: 10.1523/JNEUROSCI.4995-09.2010. View

4.
Vassar R, Ngai J, Axel R . Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell. 1993; 74(2):309-18. DOI: 10.1016/0092-8674(93)90422-m. View

5.
Mizuno H, Ikezoe K, Nakazawa S, Sato T, Kitamura K, Iwasato T . Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections. Cell Rep. 2018; 22(1):123-135. DOI: 10.1016/j.celrep.2017.12.012. View