» Articles » PMID: 10473628

The Role of the Membrane-spanning Domain Sequence in Glycoprotein-mediated Membrane Fusion

Overview
Journal Mol Biol Cell
Date 1999 Sep 3
PMID 10473628
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.

Citing Articles

Viral Membrane Fusion and the Transmembrane Domain.

Barrett C, Dutch R Viruses. 2020; 12(7).

PMID: 32604992 PMC: 7412173. DOI: 10.3390/v12070693.


Characterizing the Murine Leukemia Virus Envelope Glycoprotein Membrane-Spanning Domain for Its Roles in Interface Alignment and Fusogenicity.

Salamango D, Johnson M J Virol. 2015; 89(24):12492-500.

PMID: 26446598 PMC: 4665228. DOI: 10.1128/JVI.01901-15.


Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

Smith E, Smith S, Carter J, Webb S, Gibson K, Hellman L J Biol Chem. 2013; 288(50):35726-35.

PMID: 24178297 PMC: 3861624. DOI: 10.1074/jbc.M113.514554.


Analysis of jaagsiekte sheep retrovirus (JSRV) envelope protein domains in transformation.

Hull S, Lim J, Hamil A, Nitta T, Fan H Virus Genes. 2012; 45(3):508-17.

PMID: 22864547 PMC: 3775717. DOI: 10.1007/s11262-012-0793-y.


The paramyxovirus fusion protein C-terminal region: mutagenesis indicates an indivisible protein unit.

Zokarkar A, Lamb R J Virol. 2011; 86(5):2600-9.

PMID: 22171273 PMC: 3302293. DOI: 10.1128/JVI.06546-11.


References
1.
Rein A, Mirro J, Haynes J, Ernst S, Nagashima K . Function of the cytoplasmic domain of a retroviral transmembrane protein: p15E-p2E cleavage activates the membrane fusion capability of the murine leukemia virus Env protein. J Virol. 1994; 68(3):1773-81. PMC: 236638. DOI: 10.1128/JVI.68.3.1773-1781.1994. View

2.
Cleverley D, Lenard J . The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci U S A. 1998; 95(7):3425-30. PMC: 19852. DOI: 10.1073/pnas.95.7.3425. View

3.
Ragheb J, Anderson W . pH-independent murine leukemia virus ecotropic envelope-mediated cell fusion: implications for the role of the R peptide and p12E TM in viral entry. J Virol. 1994; 68(5):3220-31. PMC: 236813. DOI: 10.1128/JVI.68.5.3220-3231.1994. View

4.
Bullough P, Hughson F, Skehel J, Wiley D . Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994; 371(6492):37-43. DOI: 10.1038/371037a0. View

5.
Melikyan G, White J, Cohen F . GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995; 131(3):679-91. PMC: 2120621. DOI: 10.1083/jcb.131.3.679. View