Antolinez-Fernandez A, Esteban-Ramos P, Fernandez-Moreno M, Clemente P
Front Cell Dev Biol. 2024; 12:1410245.
PMID: 38855161
PMC: 11157125.
DOI: 10.3389/fcell.2024.1410245.
Cox R, Poulton J, Williams S
Reprod Fertil. 2022; 2(4):R113-R129.
PMID: 35118415
PMC: 8801022.
DOI: 10.1530/RAF-21-0060.
Silva-Pinheiro P, Minczuk M
Nat Rev Genet. 2021; 23(4):199-214.
PMID: 34857922
DOI: 10.1038/s41576-021-00432-x.
Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y
Biol Reprod. 2019; 102(3):607-619.
PMID: 31621839
PMC: 7068114.
DOI: 10.1093/biolre/ioz202.
Scheid A, Beadnell T, Welch D
Adv Cancer Res. 2019; 142:63-105.
PMID: 30885364
PMC: 6921473.
DOI: 10.1016/bs.acr.2019.01.001.
Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems.
Kuszak A, Espey M, Falk M, Holmbeck M, Manfredi G, Shadel G
Annu Rev Pathol. 2017; 13:163-191.
PMID: 29099651
PMC: 5911915.
DOI: 10.1146/annurev-pathol-020117-043644.
A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease.
Kauppila J, Baines H, Bratic A, Simard M, Freyer C, Mourier A
Cell Rep. 2016; 16(11):2980-2990.
PMID: 27626666
PMC: 5039181.
DOI: 10.1016/j.celrep.2016.08.037.
Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children.
Diot A, Dombi E, Lodge T, Liao C, Morten K, Carver J
Biochem Soc Trans. 2016; 44(4):1091-100.
PMID: 27528757
PMC: 4984448.
DOI: 10.1042/BST20160095.
Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors.
Torraco A, Peralta S, Iommarini L, Diaz F
Mitochondrion. 2015; 21:76-91.
PMID: 25660179
PMC: 4364530.
DOI: 10.1016/j.mito.2015.01.009.
Human mitochondrial disease-like symptoms caused by a reduced tRNA aminoacylation activity in flies.
Guitart T, Picchioni D, Pineyro D, Ribas de Pouplana L
Nucleic Acids Res. 2013; 41(13):6595-608.
PMID: 23677612
PMC: 3711456.
DOI: 10.1093/nar/gkt402.
A mitochondrial bioenergetic etiology of disease.
Wallace D
J Clin Invest. 2013; 123(4):1405-12.
PMID: 23543062
PMC: 3614529.
DOI: 10.1172/JCI61398.
Animal models of human mitochondrial DNA mutations.
Dunn D, Cannon M, Irwin M, Pinkert C
Biochim Biophys Acta. 2011; 1820(5):601-7.
PMID: 21854831
PMC: 3249501.
DOI: 10.1016/j.bbagen.2011.08.005.
Mitochondrial DNA mutations in disease and aging.
Park C, Larsson N
J Cell Biol. 2011; 193(5):809-18.
PMID: 21606204
PMC: 3105550.
DOI: 10.1083/jcb.201010024.
Mouse models of mitochondrial DNA defects and their relevance for human disease.
Tyynismaa H, Suomalainen A
EMBO Rep. 2009; 10(2):137-43.
PMID: 19148224
PMC: 2637315.
DOI: 10.1038/embor.2008.242.
Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases.
Torraco A, Diaz F, Vempati U, Moraes C
Biochim Biophys Acta. 2008; 1793(1):171-80.
PMID: 18601959
PMC: 2652735.
DOI: 10.1016/j.bbamcr.2008.06.003.
Mitochondrial DNA mutations in human disease.
Taylor R, Turnbull D
Nat Rev Genet. 2005; 6(5):389-402.
PMID: 15861210
PMC: 1762815.
DOI: 10.1038/nrg1606.
Production of homoplasmic xenomitochondrial mice.
McKenzie M, Trounce I, Cassar C, Pinkert C
Proc Natl Acad Sci U S A. 2004; 101(6):1685-90.
PMID: 14745024
PMC: 341818.
DOI: 10.1073/pnas.0303184101.
Revisiting the mouse mitochondrial DNA sequence.
Bayona-Bafaluy M, Acin-Perez R, Mullikin J, Park J, Moreno-Loshuertos R, Hu P
Nucleic Acids Res. 2003; 31(18):5349-55.
PMID: 12954771
PMC: 203322.
DOI: 10.1093/nar/gkg739.
Transmitochondrial mice: proof of principle and promises.
Hirano M
Proc Natl Acad Sci U S A. 2001; 98(2):401-3.
PMID: 11209045
PMC: 33362.
DOI: 10.1073/pnas.98.2.401.
Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice.
Sligh J, Levy S, Waymire K, Allard P, Dillehay D, Nusinowitz S
Proc Natl Acad Sci U S A. 2000; 97(26):14461-6.
PMID: 11106380
PMC: 18941.
DOI: 10.1073/pnas.250491597.