Li D, Liu G, Li F, Ren H, Tang Y, Chen Y
Sci Adv. 2025; 11(7):eadt3584.
PMID: 39937908
PMC: 11817925.
DOI: 10.1126/sciadv.adt3584.
Chin H, Tai Y, Yep R, Chang Y, Hsu C, Wang C
Front Neurosci. 2024; 18:1412527.
PMID: 39411147
PMC: 11473405.
DOI: 10.3389/fnins.2024.1412527.
Melling J, Turner W, Hogendoorn H
J Vis. 2024; 24(11):5.
PMID: 39377741
PMC: 11463704.
DOI: 10.1167/jov.24.11.5.
Zhang S, Morrison J, Sun T, Kowal D, Greene E
J Vis. 2024; 24(6):9.
PMID: 38856981
PMC: 11174100.
DOI: 10.1167/jov.24.6.9.
Groh J, Schmehl M, Caruso V, Tokdar S
Trends Cogn Sci. 2024; 28(7):600-613.
PMID: 38763804
PMC: 11793079.
DOI: 10.1016/j.tics.2024.04.008.
Neural correlates of perceptual similarity masking in primate V1.
Chen S, Chen Y, Geisler W, Seidemann E
Elife. 2024; 12.
PMID: 38592269
PMC: 11003749.
DOI: 10.7554/eLife.89570.
FOUNDATIONS OF VISUAL FORM SELECTIVITY IN MACAQUE AREAS V1 AND V2.
Oleskiw T, Lieber J, Simoncelli E, Movshon J
bioRxiv. 2024; .
PMID: 38496618
PMC: 10942284.
DOI: 10.1101/2024.03.04.583307.
On the contrast response function of adapted neural populations.
Tring E, Dipoppa M, Ringach D
J Neurophysiol. 2024; 131(2):446-453.
PMID: 38264786
PMC: 11305633.
DOI: 10.1152/jn.00413.2023.
Normalization by orientation-tuned surround in human V1-V3.
Fang Z, Bloem I, Olsson C, Ma W, Winawer J
PLoS Comput Biol. 2023; 19(12):e1011704.
PMID: 38150484
PMC: 10793941.
DOI: 10.1371/journal.pcbi.1011704.
Generalizing biological surround suppression based on center surround similarity via deep neural network models.
Pan X, DeForge A, Schwartz O
PLoS Comput Biol. 2023; 19(9):e1011486.
PMID: 37738258
PMC: 10550176.
DOI: 10.1371/journal.pcbi.1011486.
NEURAL CORRELATES OF PERCEPTUAL SIMILARITY MASKING IN PRIMATE V1.
Chen S, Chen Y, Geisler W, Seidemann E
bioRxiv. 2023; .
PMID: 37503133
PMC: 10369882.
DOI: 10.1101/2023.07.06.547970.
Distinct neural mechanisms construct classical versus extraclassical inhibitory surrounds in an inhibitory nucleus in the midbrain attention network.
Schryver H, Mysore S
Nat Commun. 2023; 14(1):3400.
PMID: 37296109
PMC: 10256684.
DOI: 10.1038/s41467-023-39073-5.
The normalization model predicts responses in the human visual cortex during object-based attention.
Doostani N, Hossein-Zadeh G, Vaziri-Pashkam M
Elife. 2023; 12.
PMID: 37163571
PMC: 10229119.
DOI: 10.7554/eLife.75726.
Contributions of low- and high-level contextual mechanisms to human face perception.
Canoluk M, Moors P, Goffaux V
PLoS One. 2023; 18(5):e0285255.
PMID: 37130144
PMC: 10153715.
DOI: 10.1371/journal.pone.0285255.
New insights into binocular rivalry from the reconstruction of evolving percepts using model network dynamics.
Barkdoll K, Lu Y, Barranca V
Front Comput Neurosci. 2023; 17:1137015.
PMID: 37034441
PMC: 10079880.
DOI: 10.3389/fncom.2023.1137015.
Object Boundary Detection in Natural Images May Depend on "Incitatory" Cell-Cell Interactions.
Mel G, Ramachandra C, Mel B
J Neurosci. 2022; 42(48):8960-8979.
PMID: 36241385
PMC: 9732833.
DOI: 10.1523/JNEUROSCI.2581-18.2022.
Dynamics and Mechanisms of Contrast-Dependent Modulation of Spatial-Frequency Tuning in the Early Visual Cortex.
Tanaka H, Sawada R
J Neurosci. 2022; 42(37):7047-7059.
PMID: 35927035
PMC: 9480874.
DOI: 10.1523/JNEUROSCI.2086-21.2022.
Small-angle attraction in the tilt illusion.
Akgoz A, Gheorghiu E, Kingdom F
J Vis. 2022; 22(8):16.
PMID: 35900725
PMC: 9344215.
DOI: 10.1167/jov.22.8.16.
Model-based characterization of the selectivity of neurons in primary visual cortex.
Bartsch F, Cumming B, Butts D
J Neurophysiol. 2022; 128(2):350-363.
PMID: 35766377
PMC: 9359659.
DOI: 10.1152/jn.00416.2021.
A behavioral receptive field for ocular following in monkeys: Spatial summation and its spatial frequency tuning.
Barthelemy F, Fleuriet J, Perrinet L, Masson G
eNeuro. 2022; .
PMID: 35760525
PMC: 9275147.
DOI: 10.1523/ENEURO.0374-21.2022.