» Articles » PMID: 10206646

Presenilin is Required for Activity and Nuclear Access of Notch in Drosophila

Overview
Journal Nature
Specialty Science
Date 1999 Apr 17
PMID 10206646
Citations 263
Authors
Affiliations
Soon will be listed here.
Abstract

Presenilins are membrane proteins with multiple transmembrane domains that are thought to contribute to the development of Alzheimer's disease by affecting the processing of beta-amyloid precursor protein. Presenilins also facilitate the activity of transmembrane receptors of the LIN-12/Notch family. After ligand-induced processing, the intracellular domain of LIN-12/Notch can enter the nucleus and participate in the transcriptional control of downstream target genes. Here we show that null mutations in the Drosophila Presenilin gene abolish Notch signal transduction and prevent its intracellular domain from entering the nucleus. Furthermore, we provide evidence that presenilin is required for the proteolytic release of the intracellular domain from the membrane following activation of Notch by ligand.

Citing Articles

Modes of Notch signalling in development and disease.

Bray S, Bigas A Nat Rev Mol Cell Biol. 2025; .

PMID: 40065190 DOI: 10.1038/s41580-025-00835-2.


Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research.

Iluta S, Nistor M, Buruiana S, Dima D Life (Basel). 2025; 15(2).

PMID: 40003637 PMC: 11856057. DOI: 10.3390/life15020228.


Altered expression of Presenilin2 impacts endolysosomal homeostasis and synapse function in Alzheimer's disease-relevant brain circuits.

Perdok A, Van Acker Z, Vrancx C, Sannerud R, Vorsters I, Verrengia A Nat Commun. 2024; 15(1):10412.

PMID: 39613768 PMC: 11607342. DOI: 10.1038/s41467-024-54777-y.


Mitochondrial Quality Control in Alzheimer's Disease: Insights from Models.

Ganguly U, Carroll T, Nehrke K, Johnson G Antioxidants (Basel). 2024; 13(11).

PMID: 39594485 PMC: 11590956. DOI: 10.3390/antiox13111343.


Extramacrochaetae regulates Notch signaling in the eye through non-apoptotic caspase activity.

Nair S, Baker N Elife. 2024; 12.

PMID: 39564985 PMC: 11578588. DOI: 10.7554/eLife.91988.