Ran Y, Xu H, Yang Q, Xu Y, Yang H, Qiao D
Biotechnol Biofuels Bioprod. 2022; 15(1):103.
PMID: 36209175
PMC: 9548168.
DOI: 10.1186/s13068-022-02177-z.
Zhang Y, Su M, Wang Z, Nielsen J, Liu Z
Synth Syst Biotechnol. 2022; 7(4):1034-1043.
PMID: 35801089
PMC: 9241035.
DOI: 10.1016/j.synbio.2022.06.004.
Glauche F, Glazyrina J, Cruz Bournazou M, Kiesewetter G, Cuda F, Goelling D
Eng Life Sci. 2020; 17(11):1215-1220.
PMID: 32624749
PMC: 6999230.
DOI: 10.1002/elsc.201600029.
Alipourfard I, Datukishvili N, Bakhtiyari S, Haghani K, Di Renzo L, de Miranda R
Avicenna J Med Biotechnol. 2019; 11(3):215-220.
PMID: 31379993
PMC: 6626512.
Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W
Microb Cell Fact. 2019; 18(1):24.
PMID: 30709398
PMC: 6359873.
DOI: 10.1186/s12934-019-1068-2.
Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid.
Balderas-Hernandez V, Correia K, Mahadevan R
J Ind Microbiol Biotechnol. 2018; 45(8):735-751.
PMID: 29876685
DOI: 10.1007/s10295-018-2053-1.
The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
Alcaino J, Bravo N, Cordova P, Marcoleta A, Contreras G, Barahona S
PLoS One. 2016; 11(9):e0162838.
PMID: 27622474
PMC: 5021340.
DOI: 10.1371/journal.pone.0162838.
Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker's yeast in lean dough.
Lin X, Zhang C, Bai X, Song H, Xiao D
Microb Cell Fact. 2014; 13:93.
PMID: 24993311
PMC: 4094228.
DOI: 10.1186/s12934-014-0093-4.
Impact of oleic acid as co-substrate of glucose on "short" and "long-term" Crabtree effect in Saccharomyces cerevisiae.
Marc J, Feria-Gervasio D, Mouret J, Guillouet S
Microb Cell Fact. 2013; 12:83.
PMID: 24059537
PMC: 3851978.
DOI: 10.1186/1475-2859-12-83.
Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel.
Zou J, Guo X, Shen T, Dong J, Zhang C, Xiao D
J Ind Microbiol Biotechnol. 2013; 40(3-4):353-63.
PMID: 23344501
DOI: 10.1007/s10295-012-1227-5.
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.
Oud B, Flores C, Gancedo C, Zhang X, Trueheart J, Daran J
Microb Cell Fact. 2012; 11:131.
PMID: 22978798
PMC: 3503853.
DOI: 10.1186/1475-2859-11-131.
Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.
Varela C, Kutyna D, Solomon M, Black C, Borneman A, Henschke P
Appl Environ Microbiol. 2012; 78(17):6068-77.
PMID: 22729542
PMC: 3416606.
DOI: 10.1128/AEM.01279-12.
Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.
Huisjes E, de Hulster E, van Dam J, Pronk J, van Maris A
Appl Environ Microbiol. 2012; 78(15):5052-9.
PMID: 22582063
PMC: 3416429.
DOI: 10.1128/AEM.07617-11.
Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae.
Christensen T, Oliveira A, Nielsen J
BMC Syst Biol. 2009; 3:7.
PMID: 19144179
PMC: 2661888.
DOI: 10.1186/1752-0509-3-7.
Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity.
Jansen M, Daran-Lapujade P, de Winde J, Piper M, Pronk J
Appl Environ Microbiol. 2004; 70(4):1956-63.
PMID: 15066785
PMC: 383169.
DOI: 10.1128/AEM.70.4.1956-1963.2004.
The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
Papamichos-Chronakis M, Gligoris T, Tzamarias D
EMBO Rep. 2004; 5(4):368-72.
PMID: 15031717
PMC: 1299031.
DOI: 10.1038/sj.embor.7400120.
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast.
van Maris A, Geertman J, Vermeulen A, Groothuizen M, Winkler A, Piper M
Appl Environ Microbiol. 2004; 70(1):159-66.
PMID: 14711638
PMC: 321313.
DOI: 10.1128/AEM.70.1.159-166.2004.
Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
Lopez M, Redruello B, Valdes E, Moreno F, Heinisch J, Rodicio R
Curr Genet. 2003; 44(6):305-16.
PMID: 14569415
DOI: 10.1007/s00294-003-0453-9.
Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
Schuller H
Curr Genet. 2003; 43(3):139-60.
PMID: 12715202
DOI: 10.1007/s00294-003-0381-8.
Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.
Jansen M, de Winde J, Pronk J
Appl Environ Microbiol. 2002; 68(9):4259-65.
PMID: 12200274
PMC: 124116.
DOI: 10.1128/AEM.68.9.4259-4265.2002.