» Articles » PMID: 1016693

Kinetic Isotope Effects in the Photochemical Cycle of Bacteriorhodopsin

Overview
Specialty Biophysics
Date 1976 Dec 22
PMID 1016693
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Kinetics were determined for the four transients K590, L540, M410, O660 of the photochemical cycle of bacteriorhodopsin (BR570) both in 1H2O and in 2H2O over a wide temperature range. Breaks in the Arrhenius plots, observed at 25 degrees-32 degrees for the longest-lived transients coincide with a transition point in the microviscosity of the membrane as measured by depolarization of an added fluorescent probe. The earliest isotope effect occurs in the decay of L540, and is present in the subsequent formation and decay of M410 and O660. Thus in the light-driven proton pump of BR570, proton ejection from the Schiff base correlates with decay of L540 and reprotonation occurs with the decay of both M410 and O660 back to BR570.

Citing Articles

Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2.

Resler T, Schultz B, Lorenz-Fonfria V, Schlesinger R, Heberle J Biophys J. 2015; 109(2):287-97.

PMID: 26200864 PMC: 4621815. DOI: 10.1016/j.bpj.2015.06.023.


Branching photocycle of sensory rhodopsin in halobacterium halobium.

Ohtani H, Kobayashi T, Tsuda M Biophys J. 2009; 53(4):493-6.

PMID: 19431721 PMC: 1330222. DOI: 10.1016/S0006-3495(88)83128-X.


The photocycle of bacteriorhodopsin in the two-dimensional orthorombic crystal form of purple membrane.

Korenstein R, Michel H, Hess B Biophys J. 2009; 47(3):295-302.

PMID: 19431584 PMC: 1435207. DOI: 10.1016/S0006-3495(85)83919-9.


Relationship of proton release at the extracellular surface to deprotonation of the schiff base in the bacteriorhodopsin photocycle.

Cao Y, Brown L, Sasaki J, Maeda A, Needleman R, Lanyi J Biophys J. 1995; 68(4):1518-30.

PMID: 7787037 PMC: 1282046. DOI: 10.1016/S0006-3495(95)80324-3.


Photoelectric conversion by bacteriorhodopsin in charged synthetic membranes.

Singh K, Korenstein R, Lebedeva H, Caplan S Biophys J. 1980; 31(3):393-401.

PMID: 7260294 PMC: 1328798. DOI: 10.1016/S0006-3495(80)85067-3.


References
1.
Teichberg V, Shinitzky M . Fluorescence polarization studies of lysozyme and lysozyme-saccharide complexes. J Mol Biol. 1973; 74(4):519-31. DOI: 10.1016/0022-2836(73)90044-2. View

2.
Shinitzky M, Inbar M . Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells. J Mol Biol. 1974; 85(4):603-15. DOI: 10.1016/0022-2836(74)90318-0. View

3.
Lozier R, Bogomolni R, Stoeckenius W . Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J. 1975; 15(9):955-62. PMC: 1334761. DOI: 10.1016/S0006-3495(75)85875-9. View

4.
Cogan U, Shinitzky M, Weber G, Nishida T . Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes. Biochemistry. 1973; 12(3):521-8. DOI: 10.1021/bi00727a026. View

5.
Lanyi J . Irregular bilayer structure in vesicles prepared from Halobactbrium cutirubrum lipids. Biochim Biophys Acta. 1974; 356(3):245-56. DOI: 10.1016/0005-2736(74)90265-x. View