» Articles » PMID: 10050261

Genistein-induced Upregulation of P21WAF1, Downregulation of Cyclin B, and Induction of Apoptosis in Prostate Cancer Cells

Overview
Journal Nutr Cancer
Publisher Routledge
Date 1999 Mar 2
PMID 10050261
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Increased soy consumption in Asian diets, resulting in increased serum isoflavone levels, has been associated with a decreased risk for prostate adenocarcinoma (PCa). The isoflavone genistein is believed to be the anticancer agent found in soy, and significant levels of genistein have been detected in human prostatic fluid, implicating the role of genistein in PCa prevention. Recent studies have demonstrated genistein's ability to inhibit cell growth and induce apoptosis in several cell lines; however, the molecular mechanisms of genistein's effect are not known. We have evaluated the mechanism by which genistein may inhibit PCa cell growth. Here we report that genistein inhibits PCa cell growth in culture in a dose-dependent manner, which is accompanied by a G2/M cell cycle arrest. Cell growth inhibition was observed with concomitant downregulation of cyclin B, upregulation of the p21WAF1 growth-inhibitory protein, and induction of apoptosis. Collectively, these results provide experimental evidence for a novel effect of genistein on cell cycle gene regulation, resulting in the inhibition of cell growth and ultimate demise of tumor cells.

Citing Articles

The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens.

Figueira M, Carvalho T, Macario-Monteiro J, Cardoso H, Correia S, Vaz C Biomedicines. 2024; 12(8).

PMID: 39200101 PMC: 11351860. DOI: 10.3390/biomedicines12081636.


Molecular Pathways of Genistein Activity in Breast Cancer Cells.

Konstantinou E, Gioxari A, Dimitriou M, Panoutsopoulos G, Panagiotopoulos A Int J Mol Sci. 2024; 25(10).

PMID: 38791595 PMC: 11122029. DOI: 10.3390/ijms25105556.


The Use of Soy Isoflavones in the Treatment of Prostate Cancer: A Focus on the Cellular Effects.

Van der Eecken H, Joniau S, Berghen C, Rans K, De Meerleer G Nutrients. 2023; 15(23).

PMID: 38068715 PMC: 10708402. DOI: 10.3390/nu15234856.


Therapeutic vulnerabilities of cancer stem cells and effects of natural products.

Reisenauer K, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube J Nat Prod Rep. 2023; 40(8):1432-1456.

PMID: 37103550 PMC: 10524555. DOI: 10.1039/d3np00002h.


Rottlerin and genistein inhibit neuroblastoma cell proliferation and invasion through EF2K suppression and related protein pathways.

Erdogan M, Yilmaz O Naunyn Schmiedebergs Arch Pharmacol. 2023; 396(10):2481-2500.

PMID: 37083712 DOI: 10.1007/s00210-023-02473-x.