Alotaibi M
Nanomaterials (Basel). 2024; 14(12).
PMID: 38921927
PMC: 11206997.
DOI: 10.3390/nano14121051.
Alotaibi M
Nanomaterials (Basel). 2024; 14(2).
PMID: 38251155
PMC: 10819950.
DOI: 10.3390/nano14020191.
Gomer A, Bredow T
ChemistryOpen. 2022; 11(6):e202200077.
PMID: 35642133
PMC: 9156812.
DOI: 10.1002/open.202200077.
Nadeem I, Hargreaves L, Harrison G, Idriss H, Shluger A, Thornton G
J Phys Chem C Nanomater Interfaces. 2021; 125(25):13770-13779.
PMID: 34239659
PMC: 8256415.
DOI: 10.1021/acs.jpcc.1c00892.
Engelkamp B, Schierbaum K
Sensors (Basel). 2021; 21(7).
PMID: 33917432
PMC: 8038718.
DOI: 10.3390/s21072558.
Atomic-resolution imaging of rutile TiO(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy.
Katsube D, Ojima S, Inami E, Abe M
Beilstein J Nanotechnol. 2020; 11:443-449.
PMID: 32215231
PMC: 7082707.
DOI: 10.3762/bjnano.11.35.
Sn-Doped Rutile TiO Hollow Nanocrystals with Enhanced Lithium-Ion Batteries Performance.
Jiao S, Lian G, Jing L, Xu Z, Wang Q, Cui D
ACS Omega. 2019; 3(1):1329-1337.
PMID: 31457969
PMC: 6641342.
DOI: 10.1021/acsomega.7b01340.
Performance Enhancement of CdS/CdSe Quantum Dot-Sensitized Solar Cells with (001)-Oriented Anatase TiO Nanosheets Photoanode.
Huang K, Luo Y, Cheng H, Tang J, Huang J
Nanoscale Res Lett. 2019; 14(1):18.
PMID: 30635791
PMC: 6329687.
DOI: 10.1186/s11671-018-2842-5.
Three-phase junction for modulating electron-hole migration in anatase-rutile photocatalysts.
Zhao W, Zhu S, Li Y, Liu Z
Chem Sci. 2018; 6(6):3483-3494.
PMID: 29511511
PMC: 5659171.
DOI: 10.1039/c5sc00621j.
Surface Structure of TiO Rutile (011) Exposed to Liquid Water.
Balajka J, Aschauer U, Mertens S, Selloni A, Schmid M, Diebold U
J Phys Chem C Nanomater Interfaces. 2017; 121(47):26424-26431.
PMID: 29285204
PMC: 5735375.
DOI: 10.1021/acs.jpcc.7b09674.
Tertiary amine mediated aerobic oxidation of sulfides into sulfoxides by visible-light photoredox catalysis on TiO.
Lang X, Hao W, Leow W, Li S, Zhao J, Chen X
Chem Sci. 2017; 6(8):5000-5005.
PMID: 29142727
PMC: 5664354.
DOI: 10.1039/c5sc01813g.
Fabrication of Pt/Ti/TiO₂ Photoelectrodes by RF-Magnetron Sputtering for Separate Hydrogen and Oxygen Production.
Chiarello G, Tealdi C, Mustarelli P, Selli E
Materials (Basel). 2017; 9(4).
PMID: 28773404
PMC: 5502972.
DOI: 10.3390/ma9040279.
Doping concentration dependence of microstructure and magnetic behaviours in Co-doped TiO2 nanorods.
Tseng L, Luo X, Tan T, Li S, Yi J
Nanoscale Res Lett. 2015; 9(1):673.
PMID: 25593558
PMC: 4273698.
DOI: 10.1186/1556-276X-9-673.
(2 × 1) Reconstructions of TiO(011) Revealed by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy.
Pang C, Yurtsever A, Onoda J, Sugimoto Y, Thornton G
J Phys Chem C Nanomater Interfaces. 2014; 118(40):23168-23174.
PMID: 25309642
PMC: 4191060.
DOI: 10.1021/jp507422s.
Influence of material properties on TiO2 nanoparticle agglomeration.
Zhou D, Ji Z, Jiang X, Dunphy D, Brinker J, Keller A
PLoS One. 2013; 8(11):e81239.
PMID: 24282573
PMC: 3839896.
DOI: 10.1371/journal.pone.0081239.
Adsorption and Self-Assembly of Large Polycyclic Molecules on the Surfaces of TiO2 Single Crystals.
Godlewski S, Szymonski M
Int J Mol Sci. 2013; 14(2):2946-66.
PMID: 23364615
PMC: 3588024.
DOI: 10.3390/ijms14022946.
Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts--a DFT investigation: relevance to Renu-Seeram bio solar cell.
Koch R, Lipton A, Filipek S, Renugopalakrishnan V
J Mol Model. 2010; 17(6):1467-72.
PMID: 20853182
PMC: 3102192.
DOI: 10.1007/s00894-010-0853-y.