» Authors » David Szanto

David Szanto

Explore the profile of David Szanto including associated specialties, affiliations and a list of published articles. Areas
Snapshot
Articles 5
Citations 1
Followers 0
Related Specialties
Top 10 Co-Authors
Published In
Affiliations
Soon will be listed here.
Recent Articles
1.
Wang J, Johnson B, Chen Z, Zhang H, Szanto D, Woods B, et al.
Front Ophthalmol (Lausanne) . 2025 Feb; 4:1497848. PMID: 39963427
Introduction: Glaucoma, optic neuritis (ON), and non-arteritic anterior ischemic optic neuropathy (NAION) produce distinct patterns of retinal ganglion cell (RGC) damage. We propose a booster Variational Autoencoder (bVAE) to capture...
2.
Szanto D, Wang J, Woods B, Elze T, Garvin M, Pasquale L, et al.
Sci Rep . 2024 Dec; 14(1):30935. PMID: 39730673
We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis...
3.
Szanto D, Wall M, Chong L, Woods B, Elze T, Wang J, et al.
Transl Vis Sci Technol . 2024 Dec; 13(12):15. PMID: 39666357
Purpose: Disorders of the anterior optic nerve cause quantifiable patterns, or archetypes (AT), in visual fields (VFs) obtained using standardized automated perimetry using stimulus size III (size III). VFs with...
4.
Szanto D, Wall M, Chong L, Kupersmith M
Transl Vis Sci Technol . 2024 Dec; 13(12):8. PMID: 39636721
Purpose: Standard automated perimetry (SAP) visual field (VF) results are more repeatable using Goldmann stimulus size V (size V) in eyes with moderate/severe deficits due to glaucoma. There are few...
5.
Szanto D, Wall M, Chong L, Kupersmith M
medRxiv . 2024 Aug; PMID: 39132472
Objective: Standard automated perimetry (SAP) visual field (VF) results are more repeatable using Goldmann stimulus size V (stimV) in eyes with moderate/severe deficits due to glaucoma. There are few reports...
6.
Branco J, Wang J, Elze T, Garvin M, Pasquale L, Kardon R, et al.
BMJ Neurol Open . 2024 Jul; 6(1):e000503. PMID: 38952840
Background: Machine learning (ML) can differentiate papilloedema from normal optic discs using fundus photos. Currently, papilloedema severity is assessed using the descriptive, ordinal Frisén scale. We hypothesise that ML can...