Meyer-Ortmanns H
Front Netw Physiol. 2023; 3:1276401.
PMID: 38020242
PMC: 10663269.
DOI: 10.3389/fnetp.2023.1276401.
Hancock F, Rosas F, McCutcheon R, Cabral J, Dipasquale O, Turkheimer F
PLoS One. 2023; 18(3):e0282707.
PMID: 36952467
PMC: 10035891.
DOI: 10.1371/journal.pone.0282707.
Miller J, Ryu H, Wang X, Booth V, Campbell S
Front Comput Neurosci. 2022; 16:903883.
PMID: 36051629
PMC: 9425835.
DOI: 10.3389/fncom.2022.903883.
Frolich S, Markovic D, Kiebel S
Front Artif Intell. 2021; 4:530937.
PMID: 34095815
PMC: 8176225.
DOI: 10.3389/frai.2021.530937.
Bick C, Goodfellow M, Laing C, Martens E
J Math Neurosci. 2020; 10(1):9.
PMID: 32462281
PMC: 7253574.
DOI: 10.1186/s13408-020-00086-9.
Transition from spiral wave chimeras to phase cluster states.
Totz J, Tinsley M, Engel H, Showalter K
Sci Rep. 2020; 10(1):7821.
PMID: 32385296
PMC: 7210287.
DOI: 10.1038/s41598-020-64081-6.
A two-layered brain network model and its chimera state.
Kang L, Tian C, Huo S, Liu Z
Sci Rep. 2019; 9(1):14389.
PMID: 31591418
PMC: 6779761.
DOI: 10.1038/s41598-019-50969-5.
Connecting empirical phenomena and theoretical models of biological coordination across scales.
Zhang M, Beetle C, Kelso J, Tognoli E
J R Soc Interface. 2019; 16(157):20190360.
PMID: 31409241
PMC: 6731488.
DOI: 10.1098/rsif.2019.0360.
Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity.
Tikidji-Hamburyan R, Leonik C, Canavier C
J Neurophysiol. 2019; 121(4):1125-1142.
PMID: 30726155
PMC: 6485746.
DOI: 10.1152/jn.00728.2018.
Putting the "dynamic" back into dynamic functional connectivity.
Heitmann S, Breakspear M
Netw Neurosci. 2018; 2(2):150-174.
PMID: 30215031
PMC: 6130444.
DOI: 10.1162/netn_a_00041.
Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks.
Devalle F, Roxin A, Montbrio E
PLoS Comput Biol. 2017; 13(12):e1005881.
PMID: 29287081
PMC: 5764488.
DOI: 10.1371/journal.pcbi.1005881.
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego J, Nitzan M, Hallerberg S, Timme M
Nat Commun. 2017; 8(1):2192.
PMID: 29259167
PMC: 5736722.
DOI: 10.1038/s41467-017-02288-4.
Chimeras and complex cluster states in arrays of spin-torque oscillators.
Zaks M, Pikovsky A
Sci Rep. 2017; 7(1):4648.
PMID: 28680160
PMC: 5498578.
DOI: 10.1038/s41598-017-04918-9.
Multistable states in a system of coupled phase oscillators with inertia.
Yuan D, Lin F, Wang L, Liu D, Yang J, Xiao Y
Sci Rep. 2017; 7:42178.
PMID: 28176829
PMC: 5296896.
DOI: 10.1038/srep42178.
Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.
Ashwin P, Coombes S, Nicks R
J Math Neurosci. 2016; 6(1):2.
PMID: 26739133
PMC: 4703605.
DOI: 10.1186/s13408-015-0033-6.
Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.
Moon S, Cook K, Rajendran K, Kevrekidis I, Cisternas J, Laing C
J Math Neurosci. 2015; 5(1):2.
PMID: 26458901
PMC: 4602023.
DOI: 10.1186/2190-8567-5-2.
Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia.
Jadi M, Margarita Behrens M, Sejnowski T
Biol Psychiatry. 2015; 79(9):716-726.
PMID: 26281716
PMC: 4720598.
DOI: 10.1016/j.biopsych.2015.07.005.
Self-organized alternating chimera states in oscillatory media.
Haugland S, Schmidt L, Krischer K
Sci Rep. 2015; 5:9883.
PMID: 25928860
PMC: 4415649.
DOI: 10.1038/srep09883.
Emergent spike patterns in neuronal populations.
Chariker L, Young L
J Comput Neurosci. 2014; 38(1):203-20.
PMID: 25326365
DOI: 10.1007/s10827-014-0534-4.
Structure-function discrepancy: inhomogeneity and delays in synchronized neural networks.
Ton R, Deco G, Daffertshofer A
PLoS Comput Biol. 2014; 10(7):e1003736.
PMID: 25078715
PMC: 4117423.
DOI: 10.1371/journal.pcbi.1003736.