» Articles » PMID: 9925229

Image Acquisition Context: Procedure Description Attributes for Clinically Relevant Indexing and Selective Retrieval of Biomedical Images

Overview
Date 1999 Jan 30
PMID 9925229
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation.

Design: The authors introduce the notion of "image acquisition context," the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries.

Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements.

Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries.

Citing Articles

Design and Implementation of the Pre-Clinical DICOM Standard in Multi-Cohort Murine Studies.

Kalen J, Clunie D, Liu Y, Tatum J, Jacobs P, Kirby J Tomography. 2021; 7(1):1-9.

PMID: 33681459 PMC: 7934703. DOI: 10.3390/tomography7010001.


The Role of DICOM in Artificial Intelligence for Skin Disease.

Caffery L, Rotemberg V, Weber J, Soyer H, Malvehy J, Clunie D Front Med (Lausanne). 2021; 7:619787.

PMID: 33644087 PMC: 7902872. DOI: 10.3389/fmed.2020.619787.


Technical Challenges of Enterprise Imaging: HIMSS-SIIM Collaborative White Paper.

Clunie D, Dennison D, Cram D, Persons K, Bronkalla M, Primo H J Digit Imaging. 2016; 29(5):583-614.

PMID: 27576909 PMC: 5023533. DOI: 10.1007/s10278-016-9899-4.


Information extraction from multi-institutional radiology reports.

Hassanpour S, Langlotz C Artif Intell Med. 2015; 66:29-39.

PMID: 26481140 PMC: 5221793. DOI: 10.1016/j.artmed.2015.09.007.


Caption-based topical descriptors for microscopic images as published in academic papers.

Kim S, Lamkin S, Duncan P Health Info Libr J. 2010; 27(3):235-43.

PMID: 20712718 PMC: 2933792. DOI: 10.1111/j.1471-1842.2010.00897.x.


References
1.
Bidgood Jr W, Horii S . Introduction to the ACR-NEMA DICOM standard. Radiographics. 1992; 12(2):345-55. DOI: 10.1148/radiographics.12.2.1561424. View

2.
Benn D, Bidgood Jr W, Pettigrew Jr J . An imaging standard for dentistry. Extension of the radiology DICOM standard. Oral Surg Oral Med Oral Pathol. 1993; 76(3):262-5. DOI: 10.1016/0030-4220(93)90249-4. View

3.
Chute C, Cohn S, Campbell K, OLIVER D, Campbell J . The content coverage of clinical classifications. For The Computer-Based Patient Record Institute's Work Group on Codes & Structures. J Am Med Inform Assoc. 1996; 3(3):224-33. PMC: 116304. DOI: 10.1136/jamia.1996.96310636. View

4.
Bidgood Jr W, Horii S . Modular extension of the ACR-NEMA DICOM standard to support new diagnostic imaging modalities and services. J Digit Imaging. 1996; 9(2):67-77. DOI: 10.1007/BF03168859. View

5.
Bidgood Jr W, Horii S, Prior F, Van Syckle D . Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc. 1997; 4(3):199-212. PMC: 61235. DOI: 10.1136/jamia.1997.0040199. View