» Articles » PMID: 9841883

Identification of the Separate Domains in the Hepatic Glycogen-targeting Subunit of Protein Phosphatase 1 That Interact with Phosphorylase A, Glycogen and Protein Phosphatase 1

Overview
Journal Biochem J
Specialty Biochemistry
Date 1998 Dec 8
PMID 9841883
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Deletion and mutational analyses of the rat liver glycogen-targeting subunit (GL) of protein phosphatase 1 (PP1) have identified three separate domains that are responsible for binding of PP1, glycogen and phosphorylase a. The glycogen-binding domain spans the centre of GL between residues 144 and 231 and appears to be distinct from the glycogen-binding (storage) site of phosphorylase. The regulatory high-affinity binding site for phosphorylase a lies in the 16 amino acids at the C-terminus of GL. The PP1-binding domain is deduced to comprise the -RVXF- motif [Egloff, Johnson, Moorhead, Cohen and Barford (1997) EMBO J. 16, 1876-1887] located at residues 61-64 of GL and preceding lysine residues at positions 56, 57 and 59. A possible approach for increasing glycogen synthesis in certain disorders is discussed.

Citing Articles

Hemizygous variants in protein phosphatase 1 regulatory subunit 3F (PPP1R3F) are associated with a neurodevelopmental disorder characterized by developmental delay, intellectual disability and autistic features.

Liu Z, Xin B, Smith I, Sency V, Szekely J, Alkelai A Hum Mol Genet. 2023; 32(20):2981-2995.

PMID: 37531237 PMC: 10549786. DOI: 10.1093/hmg/ddad124.


Regulation of Small GTPase Rab20 by Ikaros in B-Cell Acute Lymphoblastic Leukemia.

Payne J, Song C, Ding Y, Dhanyamraju P, Bamme Y, Schramm J Int J Mol Sci. 2020; 21(5).

PMID: 32138279 PMC: 7084408. DOI: 10.3390/ijms21051718.


Association and Functional Analyses Revealed That PPP1R3B Plays an Important Role in the Regulation of Glycogen Content in the Pacific Oyster .

Liu S, Li L, Meng J, Song K, Huang B, Wang W Front Genet. 2019; 10:106.

PMID: 30853975 PMC: 6396720. DOI: 10.3389/fgene.2019.00106.


Identification of the substrate recruitment mechanism of the muscle glycogen protein phosphatase 1 holoenzyme.

Kumar G, Choy M, Koveal D, Lorinsky M, Lyons S, Kettenbach A Sci Adv. 2018; 4(11):eaau6044.

PMID: 30443599 PMC: 6235537. DOI: 10.1126/sciadv.aau6044.


Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride.

Stender S, Smagris E, Lauridsen B, Kofoed K, Nordestgaard B, Tybjaerg-Hansen A Hepatology. 2017; 67(6):2182-2195.

PMID: 29266543 PMC: 5991995. DOI: 10.1002/hep.29751.


References
1.
Bollen M, Stalmans W . The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992; 27(3):227-81. DOI: 10.3109/10409239209082564. View

2.
Francois J, Skroch J, Zellenka U, Spevak W, Tatchell K . GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992; 11(1):87-96. PMC: 556429. DOI: 10.1002/j.1460-2075.1992.tb05031.x. View

3.
Chen Y, Hansen L, Chen M, Bjorbaek C, Vestergaard H, Hansen T . Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM. Diabetes. 1994; 43(10):1234-41. DOI: 10.2337/diabetes.43.10.1234. View

4.
Moorhead G, Mackintosh C, Morrice N, Cohen P . Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Lett. 1995; 362(2):101-5. DOI: 10.1016/0014-5793(95)00197-h. View

5.
MacKintosh R, Dalby K, Campbell D, Cohen P, Cohen P, Mackintosh C . The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett. 1995; 371(3):236-40. DOI: 10.1016/0014-5793(95)00888-g. View