Manke H, Nunn S, Sulima A, Rice K, Riley A
    
    
    Brain Sci. 2023; 13(9).
  
  
    PMID: 37759895
    
          PMC: 10526358.
    
          DOI: 10.3390/brainsci13091294.
      
 
                                  
  
    Riley A, Manke H, Huang S
    
    
    Behav Neurol. 2022; 2022:8634176.
  
  
    PMID: 35496768
    
          PMC: 9045991.
    
          DOI: 10.1155/2022/8634176.
      
 
                                  
  
    Nelson K, Manke H, Bailey J, Vlachos A, Maradiaga K, Huang S
    
    
    Pharmacol Biochem Behav. 2021; 211:173286.
  
  
    PMID: 34634300
    
          PMC: 8643339.
    
          DOI: 10.1016/j.pbb.2021.173286.
      
 
                                  
  
    Zuniga A, Cunningham C
    
    
    Pharmacol Biochem Behav. 2019; 187:172799.
  
  
    PMID: 31678181
    
          PMC: 6927548.
    
          DOI: 10.1016/j.pbb.2019.172799.
      
 
                                  
  
    Riley A, Nelson K, To P, Lopez-Arnau R, Xu P, Wang D
    
    
    Neurosci Biobehav Rev. 2019; 110:150-173.
  
  
    PMID: 31101438
    
          PMC: 8617600.
    
          DOI: 10.1016/j.neubiorev.2018.07.015.
      
 
                              
              
                              
                                      
  Periodical reactivation under the effect of caffeine attenuates fear memory expression in rats.
  
    Pedraza L, Sierra R, Lotz F, de Oliveira Alvares L
    
    
    Sci Rep. 2018; 8(1):7260.
  
  
    PMID: 29740084
    
          PMC: 5940846.
    
          DOI: 10.1038/s41598-018-25648-6.
      
 
                                          
                                                          
  Cocaine and Caffeine Effects on the Conditioned Place Preference Test: Concomitant Changes on Early Genes within the Mouse Prefrontal Cortex and Nucleus Accumbens.
  
    Muniz J, Prieto J, Gonzalez B, Sosa M, Cadet J, Scorza C
    
    
    Front Behav Neurosci. 2017; 11:200.
  
  
    PMID: 29093669
    
          PMC: 5651260.
    
          DOI: 10.3389/fnbeh.2017.00200.
      
 
                                          
                                                          
  Assessing the Value of the Zebrafish Conditioned Place Preference Model for Predicting Human Abuse Potential.
  
    Brock A, Goody S, Mead A, Sudwarts A, Parker M, Brennan C
    
    
    J Pharmacol Exp Ther. 2017; 363(1):66-79.
  
  
    PMID: 28790193
    
          PMC: 5602714.
    
          DOI: 10.1124/jpet.117.242628.
      
 
                                          
                                                          
  The Affective Properties of Synthetic Cathinones: Role of Reward and Aversion in Their Abuse.
  
    King H, Riley A
    
    
    Curr Top Behav Neurosci. 2016; 32:165-181.
  
  
    PMID: 27431397
    
    
          DOI: 10.1007/7854_2016_32.
      
 
                                          
                                                          
  Caffeine, a common active adulterant of cocaine, enhances the reinforcing effect of cocaine and its motivational value.
  
    Prieto J, Scorza C, Serra G, Perra V, Galvalisi M, Abin-Carriquiry J
    
    
    Psychopharmacology (Berl). 2016; 233(15-16):2879-89.
  
  
    PMID: 27270948
    
    
          DOI: 10.1007/s00213-016-4320-z.
      
 
                                          
                                                          
  Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.
  
    Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero L, Cabezas-Bou E, Diaz-Rios M
    
    
    Neuropharmacology. 2015; 101:490-505.
  
  
    PMID: 26493631
    
          PMC: 4855515.
    
          DOI: 10.1016/j.neuropharm.2015.10.020.
      
 
                                          
                                                          
  Effects of adolescent caffeine consumption on cocaine sensitivity.
  
    ONeill C, Levis S, Schreiner D, Amat J, Maier S, Bachtell R
    
    
    Neuropsychopharmacology. 2014; 40(4):813-21.
  
  
    PMID: 25328052
    
          PMC: 4330515.
    
          DOI: 10.1038/npp.2014.278.
      
 
                                          
                                                          
  Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.
  
    Malave L, Broderick P
    
    
    J Caffeine Res. 2014; 4(2):35-40.
  
  
    PMID: 25054079
    
          PMC: 4103259.
    
          DOI: 10.1089/jcr.2014.0004.
      
 
                                          
                                                          
  The Impact of Caffeine on the Behavioral Effects of Ethanol Related to Abuse and Addiction: A Review of Animal Studies.
  
    Lopez-Cruz L, Salamone J, Correa M
    
    
    J Caffeine Res. 2014; 3(1):9-21.
  
  
    PMID: 24761272
    
          PMC: 3643311.
    
          DOI: 10.1089/jcr.2013.0003.
      
 
                                          
                                                          
  Conditioned reinforcement and locomotor activating effects of caffeine and ethanol combinations in mice.
  
    Hilbert M, May C, Griffin 3rd W
    
    
    Pharmacol Biochem Behav. 2013; 110:168-73.
  
  
    PMID: 23872371
    
          PMC: 3805737.
    
          DOI: 10.1016/j.pbb.2013.07.008.
      
 
                                          
                                                          
  Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators.
  
    Vanattou-Saifoudine N, McNamara R, Harkin A
    
    
    Br J Pharmacol. 2012; 167(5):946-59.
  
  
    PMID: 22671762
    
          PMC: 3492978.
    
          DOI: 10.1111/j.1476-5381.2012.02065.x.
      
 
                                          
                                                          
  Effects of caffeine on persistence and reinstatement of nicotine-seeking behavior in rats: interaction with nicotine-associated cues.
  
    Liu X, Jernigan C
    
    
    Psychopharmacology (Berl). 2011; 220(3):541-50.
  
  
    PMID: 21947355
    
          PMC: 3676876.
    
          DOI: 10.1007/s00213-011-2505-z.
      
 
                                          
                                                          
  Adenosine A1 and A2A receptors are not upstream of caffeine's dopamine D2 receptor-dependent aversive effects and dopamine-independent rewarding effects.
  
    Sturgess J, Ting-A-Kee R, Podbielski D, Sellings L, Chen J, van der Kooy D
    
    
    Eur J Neurosci. 2010; 32(1):143-54.
  
  
    PMID: 20576036
    
          PMC: 2994015.
    
          DOI: 10.1111/j.1460-9568.2010.07247.x.
      
 
                                          
                                                          
  Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice.
  
    Hsu C, Wang C, Chiu T
    
    
    J Biomed Sci. 2010; 17:4.
  
  
    PMID: 20074377
    
          PMC: 2843608.
    
          DOI: 10.1186/1423-0127-17-4.
      
 
                                          
                                                          
  Caffeine use in children: what we know, what we have left to learn, and why we should worry.
  
    Temple J
    
    
    Neurosci Biobehav Rev. 2009; 33(6):793-806.
  
  
    PMID: 19428492
    
          PMC: 2699625.
    
          DOI: 10.1016/j.neubiorev.2009.01.001.