» Articles » PMID: 9751673

Delivery of Colloidal Particles and Red Blood Cells to Tissue Through Microvessel Ruptures Created by Targeted Microbubble Destruction with Ultrasound

Overview
Journal Circulation
Date 1998 Sep 30
PMID 9751673
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

Background: We have previously shown that the application of ultrasound to thin-shelled microbubbles flowing through small microvessels (<7 microm in diameter) produces vessel wall ruptures in vivo. Because many intravascular drug- and gene-delivery vehicles are limited by the endothelial barrier, we hypothesized that this phenomenon could be used to deliver drug-bearing vehicles to tissue.

Methods And Results: An exteriorized rat spinotrapezius muscle preparation was used. Intravascular fluorescent red blood cells and polymer microspheres (PM) (205 and 503 nm in diameter) were delivered to the interstitium of rat skeletal muscle through microvessel ruptures created by insonifying microbubbles in vivo. On intravital microscopy, mean dispersion areas per rupture for red blood cells, 503-nm PM, and 205-nm PM were 14.5x10(3) microm2, 24. 2x10(3) microm2, and 27.2x10(3) microm2, respectively. PM dispersion areas were significantly larger than the mean dispersion area for red blood cells (P<0.05).

Conclusions: Microvessel ruptures caused by insonification of microbubbles in vivo may provide a minimally invasive means for delivering colloidal particles and engineered red blood cells across the endothelial lining of a targeted tissue region.

Citing Articles

Microbubble dynamics in brain microvessels.

Bezer J, Prentice P, Lim Kee Chang W, Morse S, Christensen-Jeffries K, Rowlands C PLoS One. 2025; 20(2):e0310425.

PMID: 39908294 PMC: 11798480. DOI: 10.1371/journal.pone.0310425.


Microbubbles bound to drug-eluting beads enable ultrasound imaging and enhanced delivery of therapeutics.

Owen J, Negussie A, Burks S, Delgado J, Mikhail A, Rivera J Sci Rep. 2024; 14(1):20929.

PMID: 39251665 PMC: 11383944. DOI: 10.1038/s41598-024-71831-3.


Focused Ultrasound: Noninvasive Image-Guided Therapy.

Moonen C, Kilroy J, Klibanov A Invest Radiol. 2024; 60(3):205-219.

PMID: 39163359 PMC: 11801465. DOI: 10.1097/RLI.0000000000001116.


Cardiac gene delivery using ultrasound: State of the field.

Singh D, Memari E, He S, Yusefi H, Helfield B Mol Ther Methods Clin Dev. 2024; 32(3):101277.

PMID: 38983873 PMC: 11231612. DOI: 10.1016/j.omtm.2024.101277.


Ultrasound enhanced siRNA delivery using cationic liposome-microbubble complexes for the treatment of squamous cell carcinoma.

Qin B, Chen X, Zhu J, Kopechek J, Helfield B, Yu F Nanotheranostics. 2024; 8(3):285-297.

PMID: 38577322 PMC: 10988211. DOI: 10.7150/ntno.90516.