» Articles » PMID: 9672240

The Renal Type II Na+/phosphate Cotransporter

Overview
Publisher Springer
Date 1998 Jul 22
PMID 9672240
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A sodium-dependent phosphate transporter (type II Na/Pi-cotransporter) was isolated which is expressed in apical membranes of proximal tubules and exhibits transport characteristics similar as described for renal reabsorption of phosphate. Type II associated Na/Pi-cotransport is electrogenic and results obtained by electrophysiological measurements support a transport model having a stoichiometry of 3 Na+/HPO4=. Changes of transport such as by parathyroid hormone and altered dietary intake of phosphate correlate with changes of the number of type II cotransporters in the apical membrane. These data suggest that the type II Na/Pi-cotransporter represents the main target for physiological and pathophysiological regulation.

Citing Articles

Mechanisms and regulation of epithelial phosphate transport in ruminants: approaches in comparative physiology.

Muscher-Banse A, Breves G Pflugers Arch. 2018; 471(1):185-191.

PMID: 30009339 DOI: 10.1007/s00424-018-2181-5.


Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells.

Orosz D, Woost P, Kolb R, Finesilver M, Jin W, Frisa P In Vitro Cell Dev Biol Anim. 2004; 40(1-2):22-34.

PMID: 14748622 DOI: 10.1290/1543-706X(2004)40<22:GIADPO>2.0.CO;2.


Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent.

Berndt T, Craig T, Bowe A, Vassiliadis J, Reczek D, Finnegan R J Clin Invest. 2003; 112(5):785-94.

PMID: 12952927 PMC: 182208. DOI: 10.1172/JCI18563.


Role of anion-cation interactions on the pre-steady-state currents of the rat Na(+)-Cl(-)-dependent GABA cotransporter rGAT1.

Bossi E, Giovannardi S, Binda F, Forlani G, Peres A J Physiol. 2002; 541(Pt 2):343-50.

PMID: 12042343 PMC: 2290322. DOI: 10.1113/jphysiol.2001.013457.


Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics.

Brooks H, Sorensen A, Terris J, Schultheis P, Lorenz J, Shull G J Physiol. 2001; 530(Pt 3):359-66.

PMID: 11158268 PMC: 2278426. DOI: 10.1111/j.1469-7793.2001.0359k.x.


References
1.
Hoffmann N, Thees M, KINNE R . Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 1976; 362(2):147-56. DOI: 10.1007/BF00583641. View

2.
Collins J, Ghishan F . Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J. 1994; 8(11):862-8. DOI: 10.1096/fasebj.8.11.8070635. View

3.
Kavanaugh M, Kabat D . Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 1996; 49(4):959-63. DOI: 10.1038/ki.1996.135. View

4.
Pfister M, Lederer E, Forgo J, Ziegler U, Lotscher M, Quabius E . Parathyroid hormone-dependent degradation of type II Na+/Pi cotransporters. J Biol Chem. 1997; 272(32):20125-30. DOI: 10.1074/jbc.272.32.20125. View

5.
Wright E, Loo D, Turk E, Hirayama B . Sodium cotransporters. Curr Opin Cell Biol. 1996; 8(4):468-73. DOI: 10.1016/s0955-0674(96)80022-6. View