Bierbaumer S, Schmermund L, List A, Winkler C, Glueck S, Kroutil W
Angew Chem Weinheim Bergstr Ger. 2024; 134(17):e202117103.
PMID: 38505243
PMC: 10946591.
DOI: 10.1002/ange.202117103.
Bierbaumer S, Schmermund L, List A, Winkler C, Glueck S, Kroutil W
Angew Chem Int Ed Engl. 2022; 61(17):e202117103.
PMID: 35188997
PMC: 9310851.
DOI: 10.1002/anie.202117103.
Das M, Dewan A, Shee S, Singh A
Antioxidants (Basel). 2021; 10(7).
PMID: 34201508
PMC: 8300815.
DOI: 10.3390/antiox10070997.
Suhadolnik M, Salgado A, Scholte L, Bleicher L, Costa P, Reis M
Sci Rep. 2017; 7(1):11231.
PMID: 28894204
PMC: 5593903.
DOI: 10.1038/s41598-017-11548-8.
Srivastava A, Allen J, Vaccaro B, Hirasawa M, Alkul S, Johnson M
Biochemistry. 2015; 54(36):5557-68.
PMID: 26305228
PMC: 4638386.
DOI: 10.1021/acs.biochem.5b00511.
Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase.
Srivastava A, Hirasawa M, Bhalla M, Chung J, Allen J, Johnson M
Biochemistry. 2013; 52(25):4343-53.
PMID: 23692082
PMC: 3741069.
DOI: 10.1021/bi400354n.
A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data.
Lancaster W, Praissman J, Poole 2nd F, Cvetkovic A, Menon A, Scott J
BMC Bioinformatics. 2011; 12:64.
PMID: 21356119
PMC: 3058030.
DOI: 10.1186/1471-2105-12-64.
Correlating EPR and X-ray structural analysis of arsenite-inhibited forms of aldehyde oxidoreductase.
Thapper A, Boer D, Brondino C, Moura J, Romao M
J Biol Inorg Chem. 2006; 12(3):353-66.
PMID: 17139522
DOI: 10.1007/s00775-006-0191-9.
Formate-reduced E. coli formate dehydrogenase H: The reinterpretation of the crystal structure suggests a new reaction mechanism.
Raaijmakers H, Romao M
J Biol Inorg Chem. 2006; 11(7):849-54.
PMID: 16830149
DOI: 10.1007/s00775-006-0129-2.
Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC.
Ezraty B, Bos J, Barras F, Aussel L
J Bacteriol. 2004; 187(1):231-7.
PMID: 15601707
PMC: 538846.
DOI: 10.1128/JB.187.1.231-237.2005.
Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
Moura J, Brondino C, Trincao J, Romao M
J Biol Inorg Chem. 2004; 9(7):791-9.
PMID: 15311335
DOI: 10.1007/s00775-004-0573-9.
The crystal structure of Escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis.
Sanishvili R, Beasley S, Skarina T, Glesne D, Joachimiak A, Edwards A
J Biol Chem. 2004; 279(40):42139-46.
PMID: 15269205
PMC: 3366512.
DOI: 10.1074/jbc.M407694200.
Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
Brondino C, Passeggi M, Caldeira J, Almendra M, Feio M, Moura J
J Biol Inorg Chem. 2003; 9(2):145-51.
PMID: 14669076
DOI: 10.1007/s00775-003-0506-z.
Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus.
Leimkuhler S, Klipp W
J Bacteriol. 1999; 181(9):2745-51.
PMID: 10217763
PMC: 93714.
DOI: 10.1128/JB.181.9.2745-2751.1999.