» Articles » PMID: 9640563

External and Internal Electrostatic Potentials of Cholinesterase Models

Overview
Date 1998 Jun 26
PMID 9640563
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The electrostatic potentials for the three-dimensional structures of cholinesterases from various species were calculated, using the Delphi algorithm, on the basis of the Poisson-Boltzmann equation. We used structures for Torpedo californica and mouse acetylcholinesterase, and built homology models of the human, Bungarus fasciatus, and Drosophila melanogaster acetylcholinesterases and human butyrylcholinesterase. All these structures reveal a negative external surface potential, in the area around the entrance to the active-site gorge, that becomes more negative as the rim of the gorge is approached. Moreover, in all cases, the potential becomes increasingly more negative along the central axis running down the gorge, and is largest at the base of the gorge, near the active site. Ten key acidic residues conserved in the sequence alignments of AChE from various species, both in the surface area near the entrance of the active-site gorge and at its base, appear to be primarily responsible for these potentials. The potentials are highly correlated among the structures examined, down to sequence identities as low as 35%. This indicates that they are a conserved property of the cholinesterase family, could serve to attract the positively charged substrate into and down the gorge to the active site, and may play other roles important for cholinesterase function.

Citing Articles

Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases.

Gabriel Guzman-Lopez E, Reina M, Felipe Hernandez-Ayala L, Galano A Antioxidants (Basel). 2023; 12(6).

PMID: 37371986 PMC: 10295297. DOI: 10.3390/antiox12061256.


The Insight of In Silico and In Vitro evaluation of Beta vulgaris phytochemicals against Alzheimer's disease targeting acetylcholinesterase.

Rehman S, Ashfaq U, Sufyan M, Shahid I, Ijaz B, Hussain M PLoS One. 2022; 17(3):e0264074.

PMID: 35239683 PMC: 8893657. DOI: 10.1371/journal.pone.0264074.


A Comprehensive Review of Cholinesterase Modeling and Simulation.

De Boer D, Nguyen N, Mao J, Moore J, Sorin E Biomolecules. 2021; 11(4).

PMID: 33920972 PMC: 8071298. DOI: 10.3390/biom11040580.


Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signalling and drug detoxification and are essential for parasite survival.

Tedla B, Sotillo J, Pickering D, Eichenberger R, Ryan S, Becker L PLoS Pathog. 2019; 15(12):e1008213.

PMID: 31809524 PMC: 6919630. DOI: 10.1371/journal.ppat.1008213.


The impact of crystallization conditions on structure-based drug design: A case study on the methylene blue/acetylcholinesterase complex.

Dym O, Song W, Felder C, Roth E, Shnyrov V, Ashani Y Protein Sci. 2016; 25(6):1096-114.

PMID: 26990888 PMC: 4941771. DOI: 10.1002/pro.2923.