Ozcete O, Banerjee A, Kaeser P
Mol Psychiatry. 2024; 29(11):3680-3693.
PMID: 38789677
PMC: 11540752.
DOI: 10.1038/s41380-024-02608-3.
Kakoty V, Sarathlal K, Kaur P, Wadhwa P, Vishwas S, Khan F
Neurol Sci. 2023; 45(4):1409-1418.
PMID: 38082050
DOI: 10.1007/s10072-023-07253-2.
Alwindi M, Bizanti A
Heliyon. 2023; 9(11):e22413.
PMID: 38034713
PMC: 10687066.
DOI: 10.1016/j.heliyon.2023.e22413.
De Alwis A, Denison J, Shah R, McCarty G, Sombers L
ACS Sens. 2023; 8(8):3187-3194.
PMID: 37552870
PMC: 10464603.
DOI: 10.1021/acssensors.3c00884.
Marshall P
Cell Mol Neurobiol. 2023; 43(7):3179-3189.
PMID: 37410316
PMC: 10477250.
DOI: 10.1007/s10571-023-01375-z.
Ultra-Processed Food, Reward System and Childhood Obesity.
Calcaterra V, Cena H, Rossi V, Santero S, Bianchi A, Zuccotti G
Children (Basel). 2023; 10(5).
PMID: 37238352
PMC: 10217200.
DOI: 10.3390/children10050804.
A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning.
Veronneau-Veilleux F, Robaey P, Ursino M, Nekka F
Front Comput Neurosci. 2022; 16:849323.
PMID: 35923915
PMC: 9342605.
DOI: 10.3389/fncom.2022.849323.
Visualizing synaptic dopamine efflux with a 2D composite nanofilm.
Bulumulla C, Krasley A, Cristofori-Armstrong B, Valinsky W, Walpita D, Ackerman D
Elife. 2022; 11.
PMID: 35786443
PMC: 9363124.
DOI: 10.7554/eLife.78773.
Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry.
Lork A, Vo K, Phan N
Front Synaptic Neurosci. 2022; 14:854957.
PMID: 35651734
PMC: 9149580.
DOI: 10.3389/fnsyn.2022.854957.
Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.
Matlik K, Garton D, Montano-Rodriguez A, Olfat S, Eren F, Casserly L
Mol Psychiatry. 2022; 27(8):3247-3261.
PMID: 35618883
PMC: 9708553.
DOI: 10.1038/s41380-022-01554-2.
A fluorescent nanosensor paint detects dopamine release at axonal varicosities with high spatiotemporal resolution.
Elizarova S, Chouaib A, Shaib A, Hill B, Mann F, Brose N
Proc Natl Acad Sci U S A. 2022; 119(22):e2202842119.
PMID: 35613050
PMC: 9295782.
DOI: 10.1073/pnas.2202842119.
Divergent properties and independent regulation of striatal dopamine and GABA co-transmission.
Zych S, Ford C
Cell Rep. 2022; 39(7):110823.
PMID: 35584679
PMC: 9134867.
DOI: 10.1016/j.celrep.2022.110823.
Development of a Dual Fluorescent and Magnetic Resonance False Neurotransmitter That Reports Accumulation and Release from Dopaminergic Synaptic Vesicles.
Post M, Lee W, Guo J, Sames D, Sulzer D
ACS Chem Neurosci. 2021; 12(24):4546-4553.
PMID: 34817175
PMC: 8678980.
DOI: 10.1021/acschemneuro.1c00580.
Spatial and temporal scales of dopamine transmission.
Liu C, Goel P, Kaeser P
Nat Rev Neurosci. 2021; 22(6):345-358.
PMID: 33837376
PMC: 8220193.
DOI: 10.1038/s41583-021-00455-7.
Dopamine Detection using Mercaptopropionic Acid and Cysteamine for Electrodes Surface Modification.
Khan M, Asif A, Khawaldeh S, Tekin A
J Electr Bioimpedance. 2021; 9(1):3-9.
PMID: 33584914
PMC: 7852013.
DOI: 10.2478/joeb-2018-0002.
Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal-oxide-semiconductor electrode array.
White K, Kim B
Nat Commun. 2021; 12(1):431.
PMID: 33462204
PMC: 7813837.
DOI: 10.1038/s41467-020-20267-0.
Spontaneous Formation of Melanin from Dopamine in the Presence of Iron.
Hedges D, Yorgason J, Perez A, Schilaty N, Williams B, Watt R
Antioxidants (Basel). 2020; 9(12).
PMID: 33339254
PMC: 7766172.
DOI: 10.3390/antiox9121285.
Direct dopamine terminal regulation by local striatal microcircuitry.
Nolan S, Zachry J, Johnson A, Brady L, Siciliano C, Calipari E
J Neurochem. 2020; 155(5):475-493.
PMID: 32356315
PMC: 7606645.
DOI: 10.1111/jnc.15034.
Glial cell line-derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in Vitro and enhances dopamine release In Vivo.
Mahato A, Kopra J, Renko J, Visnapuu T, Korhonen I, Pulkkinen N
Mov Disord. 2019; 35(2):245-255.
PMID: 31840869
PMC: 7496767.
DOI: 10.1002/mds.27943.
Computational modelling reveals contrasting effects on reinforcement learning and cognitive flexibility in stimulant use disorder and obsessive-compulsive disorder: remediating effects of dopaminergic D2/3 receptor agents.
Kanen J, Ersche K, Fineberg N, Robbins T, Cardinal R
Psychopharmacology (Berl). 2019; 236(8):2337-2358.
PMID: 31324936
PMC: 6820481.
DOI: 10.1007/s00213-019-05325-w.