» Articles » PMID: 9576784

Rhamnogalacturonan Alpha-d-galactopyranosyluronohydrolase. An Enzyme That Specifically Removes the Terminal Nonreducing Galacturonosyl Residue in Rhamnogalacturonan Regions of Pectin

Overview
Journal Plant Physiol
Specialty Physiology
Date 1998 May 22
PMID 9576784
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

A new enzyme, rhamnogalacturonan (RG) alpha-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing beta-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 &mgr;m and a maximum reaction rate of 160 units mg-1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50 degreesC. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40 degreesC) and up to 60 degreesC (for 3 h).

Citing Articles

Fruit softening: evidence for rhamnogalacturonan lyase action in vivo in ripe fruit cell walls.

Al-Hinai T, Mackay C, Fry S Ann Bot. 2024; 133(4):547-558.

PMID: 38180460 PMC: 11037484. DOI: 10.1093/aob/mcad197.


Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions.

Lorrai R, Ferrari S Plants (Basel). 2021; 10(2).

PMID: 33669710 PMC: 7921929. DOI: 10.3390/plants10020399.


Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing.

Satapathy S, Rout J, Kerry R, Thatoi H, Sahoo S Front Nutr. 2020; 7:117.

PMID: 32850938 PMC: 7424017. DOI: 10.3389/fnut.2020.00117.


A Profusion of Molecular Scissors for Pectins: Classification, Expression, and Functions of Plant Polygalacturonases.

Yang Y, Yu Y, Liang Y, Anderson C, Cao J Front Plant Sci. 2018; 9:1208.

PMID: 30154820 PMC: 6102391. DOI: 10.3389/fpls.2018.01208.


Biochemistry of fruit softening: an overview.

Payasi A, Mishra N, Chaves A, Singh R Physiol Mol Biol Plants. 2013; 15(2):103-13.

PMID: 23572919 PMC: 3550369. DOI: 10.1007/s12298-009-0012-z.


References
1.
Biely P, Benen J, Heinrichova K, Kester H, Visser J . Inversion of configuration during hydrolysis of alpha-1,4-galacturonidic linkage by three Aspergillus polygalacturonases. FEBS Lett. 1996; 382(3):249-55. DOI: 10.1016/0014-5793(96)00171-8. View

2.
Ryan C, Bishop P, Pearce G . A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities. Plant Physiol. 1981; 68(3):616-8. PMC: 425949. DOI: 10.1104/pp.68.3.616. View

3.
Heinrichova K, Dzurova M, Rexova-Benkova L . Mechanism of action of D-galacturonan digalacturonohydrolase of Selenomonas ruminantium on oligogalactosiduronic acids. Carbohydr Res. 1992; 235:269-80. DOI: 10.1016/0008-6215(92)80095-i. View

4.
Renard C, Thibault J, Mutter M, Schols H, Voragen A . Some preliminary results on the action of rhamnogalacturonase on rhamnogalacturonan oligosaccharides from beet pulp. Int J Biol Macromol. 1995; 17(6):333-6. DOI: 10.1016/0141-8130(96)81841-1. View

5.
Van Rijssel M, Gerwig G, Hansen T . Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity. Appl Environ Microbiol. 1993; 59(3):828-36. PMC: 202196. DOI: 10.1128/aem.59.3.828-836.1993. View