» Articles » PMID: 9521935

Identification of Human Gene Core Promoters in Silico

Overview
Journal Genome Res
Specialty Genetics
Date 1998 May 16
PMID 9521935
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Identification of the 5'-end of human genes requires identification of functional promoter elements. In silico identification of those elements is difficult because of the hierarchical and modular nature of promoter architecture. To address this problem, I propose a new stepwise strategy based on initial localization of a functional promoter into a 1- to 2-kb (extended promoter) region from within a large genomic DNA sequence of 100 kb or larger and further localization of a transcriptional start site (TSS) into a 50- to 100-bp (corepromoter) region. Using positional dependent 5-tuple measures, a quadratic discriminant analysis (QDA) method has been implemented in a new program-CorePromoter. Our experiments indicate that when given a 1- to 2-kb extended promoter, CorePromoter will correctly localize the TSS to a 100-bp interval approximately 60% of the time. [Figure 3 can be found in its entirety as an online supplement at http://www.genome.org.]

Citing Articles

Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle.

Archuleta S, Goodrich J, Kugel J Biomolecules. 2024; 14(2).

PMID: 38397413 PMC: 10886972. DOI: 10.3390/biom14020176.


Estrogen Receptor, Inflammatory, and FOXO Transcription Factors Regulate Expression of Myasthenia Gravis-Associated Circulating microRNAs.

Fiorillo A, Heier C, Huang Y, Tully C, Punga T, Punga A Front Immunol. 2020; 11:151.

PMID: 32153563 PMC: 7046803. DOI: 10.3389/fimmu.2020.00151.


Characterization of an iron-inducible Haemaphysalis longicornis tick-derived promoter in an Ixodes scapularis-derived tick cell line (ISE6).

Hernandez E, Kusakisako K, Hatta T, Tanaka T Parasit Vectors. 2019; 12(1):321.

PMID: 31238993 PMC: 6593522. DOI: 10.1186/s13071-019-3574-9.


BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.

de Boer C, Regev A BMC Bioinformatics. 2018; 19(1):253.

PMID: 29970004 PMC: 6029352. DOI: 10.1186/s12859-018-2255-6.


TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.

Papadopoulos P, Gutierrez L, Demmers J, Scheer E, Pourfarzad F, Papageorgiou D Mol Cell Biol. 2015; 35(12):2103-18.

PMID: 25870109 PMC: 4438247. DOI: 10.1128/MCB.01370-14.


References
1.
Prestridge D . Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol. 1995; 249(5):923-32. DOI: 10.1006/jmbi.1995.0349. View

2.
LaGrange T, Kim T, Orphanides G, Ebright Y, Ebright R, Reinberg D . High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. Proc Natl Acad Sci U S A. 1996; 93(20):10620-5. PMC: 38203. DOI: 10.1073/pnas.93.20.10620. View

3.
HUTCHINSON G . The prediction of vertebrate promoter regions using differential hexamer frequency analysis. Comput Appl Biosci. 1996; 12(5):391-8. DOI: 10.1093/bioinformatics/12.5.391. View

4.
Zhang M . Statistical features of human exons and their flanking regions. Hum Mol Genet. 1998; 7(5):919-32. DOI: 10.1093/hmg/7.5.919. View

5.
Claverie J . Computational methods for the identification of genes in vertebrate genomic sequences. Hum Mol Genet. 1997; 6(10):1735-44. DOI: 10.1093/hmg/6.10.1735. View