» Articles » PMID: 9501455

Direct Detection of Viable Bacteria, Molds, and Yeasts by Reverse Transcriptase PCR in Contaminated Milk Samples After Heat Treatment

Overview
Date 1998 Mar 21
PMID 9501455
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A fast, sensitive, and target contaminant-modulable method was developed to detect viable bacteria, molds, and yeasts after heat treatment. By reverse transcriptase PCR with elongation factor gene (EF-Tu or EF-1 alpha)-specific primers, the detection level was 10 cells ml of milk-1. The simplicity and rapidity (4 h) of the procedure suggests that this method may be easily transposable to other foods and other contaminants.

Citing Articles

Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review.

Kabiraz M, Majumdar P, Mahmud M, Bhowmik S, Ali A Heliyon. 2023; 9(4):e15482.

PMID: 37151686 PMC: 10161726. DOI: 10.1016/j.heliyon.2023.e15482.


PCR Mediated Nucleic Acid Molecular Recognition Technology for Detection of Viable and Dead Foodborne Pathogens.

Chen M, Lan X, Zhu L, Ru P, Xu W, Liu H Foods. 2022; 11(17).

PMID: 36076861 PMC: 9455676. DOI: 10.3390/foods11172675.


Innovative Use of Palladium Compounds To Selectively Detect Live Enterobacteriaceae in Milk by PCR.

Soejima T, Iwatsuki K Appl Environ Microbiol. 2016; 82(23):6930-6941.

PMID: 27663023 PMC: 5103092. DOI: 10.1128/AEM.01613-16.


Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

Molaee N, Abtahi H, Ghannadzadeh M, Karimi M, Ghaznavi-Rad E J Environ Health Sci Eng. 2015; 13:24.

PMID: 25878795 PMC: 4397879. DOI: 10.1186/s40201-015-0177-z.


Method To Detect Only Live Bacteria during PCR Amplification.

Soejima T, Iida K, Qin T, Taniai H, Seki M, Yoshida S J Clin Microbiol. 2008; 46(7):2305-13.

PMID: 18448692 PMC: 2446937. DOI: 10.1128/JCM.02171-07.


References
1.
Thompson R . EFTu provides an internal kinetic standard for translational accuracy. Trends Biochem Sci. 1988; 13(3):91-3. DOI: 10.1016/0968-0004(88)90047-3. View

2.
Cottrelle P, Cool M, Thuriaux P, Price V, Thiele D, Buhler J . Either one of the two yeast EF-1 alpha genes is required for cell viability. Curr Genet. 1985; 9(8):693-7. DOI: 10.1007/BF00449823. View

3.
Ludwig W, Weizenegger M, Betzl D, Leidel E, Lenz T, Ludvigsen A . Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: functional, structural and phylogenetic evaluations. Arch Microbiol. 1990; 153(3):241-7. DOI: 10.1007/BF00249075. View

4.
Weijland A, Harmark K, Cool R, Anborgh P, Parmeggiani A . Elongation factor Tu: a molecular switch in protein biosynthesis. Mol Microbiol. 1992; 6(6):683-8. DOI: 10.1111/j.1365-2958.1992.tb01516.x. View

5.
Merrick W . Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992; 56(2):291-315. PMC: 372869. DOI: 10.1128/mr.56.2.291-315.1992. View